Frequentists should more often consider using Bayesian methods

Recently my colleague Ruth Keogh and I had a paper published: ‘Bayesian correction for covariate measurement error: a frequentist evaluation and comparison with regression calibration’ (open access here). The paper compares the popular regression calibration approach for handling covariate measurement error in regression models with a Bayesian approach. The two methods are compared from the frequentist perspective, and one of the arguments we make is that frequentists should more often consider using Bayesian methods.

Read more

Why you shouldn’t use propensity score matching

I’ve just watched a highly thought provoking presentation by Gary King of Harvard, available here https://youtu.be/rBv39pK1iEs, on why propensity score matching should not be used to adjust for confounding in observational studies. The presentation makes great use of graphs to explain the concepts and arguments for some of the issues with propensity score matching.

Read more