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Brief overview

In many settings we are interested in effects of time-varying
treatments or exposures.

Our exploration of this area stems from analysis of RCTs where
patients may take rescue medication or discontinue randomised
treatment.

Rescue treatment over time then constitutes the time-varying
treatment. Here, we were interested in estimating the effects of
randomised treatment, removing effects of subsequent rescue.

But of course there are also many observational settings where the
treatment or exposure received may vary over time.
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Brief overview

In this setting, we generally need to adjust for confounders.

Not just baseline confounders, but also time-varying confounders.

To do this ‘correctly’ requires use of so called G-methods,
developed by Jamie Robins and co-workers [2, 1].

This talk will be about one of these methods, called G-formula (or
sometime G-computation).

I will show how this can be implemented using multiple imputation
methods.

Moreover, I will describe how we can accommodate missing data in
exposures and confounders as part of the procedure.
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Time-varying treatments and confounders

The setting under consideration is the ‘standard’ time-varying
treatment and confounding setup.

Ak denotes treatment at time/visit k , k = 0, . . . ,K .

Lk denotes time-varying confounders at visit k .

Y denotes the final outcome of interest.
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Directed acyclic graph (DAG)

L0

A0 A1 A2

L1 L2

Y
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Potential outcomes and estimands

Let Y a0,a1,a2 denote potential outcome if baseline treatment A0 is
set to value a0, treatment at time 1 A1 is set to a1, and treatment
at time 2 A2 is set to a2.

Causal estimands are then constrasts of the distributions of
Y a0,a1,a2 for different values of a0, a1, a2.

For example, the effect of treatment at all times versus no
treatment is

E (Y 1,1,1)− E (Y 0,0,0)
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Identification assumptions

Consistency: Interventions on treatment/exposure well defined so
that we can assume Y = Y a0,a1,a2 if A0 = a0, A1 = a1, A2 = a2

Conditional exchangeability (no unmeasured confounding)

Y a0,a1,a2 |= Ak |Āk−1 = āk−1, L̄k

This holds under the earlier DAG. The key is that we measure all
common causes of time-varying treatment and final outcome.
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Estimation of causal estimands

So called G-methods have been developed by Jamie Robins and
colleagues for estimating causal estimands in this setting [2, 1]:

• G-formula (sometimes known as G-computation)

• Inverse probability weighting

• G-estimation of structural nested models

In this talk I will focus on G-formula...
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G-formula

Estimation of E (Y ā) = E (Y a0,a1,a2) is based on

E(Y ā) =

∫
l0

∫
l1

∫
l2

E(Y |a0, a1, a2, l0, l1, l2)f (l2|a0, a1, l0, l1)f (l1|a0, l0)f (l0)dl2dl1dl0

This requires we specify and fit models for

• f (L0) (in fact, we typically empirically average across this, avoiding need for a model)

• f (L1|A0, L0)

• f (L2|A0,A1, L0, L1)

• f (Y |A0,A1,A2, L0, L1, L2) (in fact, all we need is a model for

E(Y |A0, A1, A2, L0, L1, L2))

In general the integrals above are intractable.

Thus in practice implementations (e.g. gformula in Stata) use
Monte-Carlo integration.
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G-formula by Monte-Carlo integration/simulation

To estimate E (Y a0,a1,a2), based on fitted models, for every
individual we:

• simulate L∗0 from f (L0) (or just use original, i.e. L∗0 = L0)

• simulate L∗1 from f (L1|A0 = a0, L
∗
0)

• simulate L∗2 from f (L2|A0 = a0,A1 = a1, L
∗
0, L

∗
1)

• simulate Y ∗ from f (Y |A0 = a0,A1 = a1,A2 = a2, L
∗
0, L

∗
1, L

∗
2)

(or just calculate E(Y |A0 = a0, A1 = a1, A2 = a2, L
∗
0 , L∗1 , L∗2 )

• calculate mean of Y ∗ across individuals
(or average E(Y |A0 = a0, A1 = a1, A2 = a2, L

∗
0 , L∗1 , L∗2 ) across individuals)
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G-formula and imputation

For those (like me) more familar with missing data methods,
G-formula can be seen as a form of single stochastic imputation of
the longitudinal history under the treatment regime of interest.

In fact, to reduce Monte-Carlo error, implementations of G-formula
create multiple imputations of these, and then average the imputed
Y ∗ across individuals and across imputations.

For inference, implementations in Stata and R use non-parametric
bootstrapping.

The close links between MI and G-formula by simulation begs the
question - could we use Rubin’s combination rules, rather than
bootstrapping, for inference?
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G-formula via multiple imputation - earlier work
Westreich et al previously highlighted close connections between
G-formula and MI in single time point setting [5]:

L A Y 0 Y 1

2.5 0 3.4 NA
7.3 1 NA 4.5
4.6 1 NA 5.7
4.2 0 4.2 NA

Impute Y 0 for those with A = 1, using L. Impute Y 1 for those
with A = 0, using L.

Calculate difference in means of Y 1 and Y 0 in imputed datasets.

Westreich et al stated that Rubin’s variance estimator cannot be
used because each individual contributes to both treated and
untreated calculations.
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G-formula via multiple imputation - earlier work

Here individual’s observed outcome is retained.

In the longitudinal setting, G-formula simulates confounders and
outcomes for all individuals afresh.

Indeed, in this setting, it may be that no individuals followed
precisely the treatment regime of interest.

We can nonetheless use MI to implement G-formula...
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G-formula via MI

For the longitudinal setup earlier, we can use MI to estimate
µ = E (Y ā) in a G-formula type approach by:

1. Augment observed data with additional nsyn rows, setting
L0, L1, L2,Y to missing in the augmented rows to missing,
and A0,A1,A2 to value ā = (a0, a1, a2).

2. Run MI on the augmented dataset, generating M imputations.

3. For imputation m (m = 1, . . . ,M), calculate mean of Y from
the augmented part of the dataset.

4. Average estimated means across M imputations (denoted µ̂)
as estimator of µ = E (Y ā).
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G-formula via MI - data structure

E.g. data structure for ā = (1, 1, 1) is

R L0 A0 L1 A1 L2 A2 Y

1 -0.3 0 0.5 0 2.2 1 1.3
1 2.3 1 4.2 1 4.6 1 5.5
1 -0.5 1 0.4 0 0.8 1 1.9

0 NA 1 NA 1 NA 1 NA
0 NA 1 NA 1 NA 1 NA
0 NA 1 NA 1 NA 1 NA

R = 1 indicates originally observed data

R = 0 indicates augmented data

21 / 47



G-formula via MI - implementation details

We have a block monotone missingness pattern in the augmented
dataset.

Due to our earlier model assumptions, we can impute sequentially
moving forwards in time:

1. Impute L0

2. Impute L1|A0, L0

3. Impute L2|A0,A1, L0, L1

4. Impute Y |A0,A1,A2, L0, L1, L2

This means if we use for example chained equations MI software,
there is no need to iterate around models.

We specify imputation equations as per above, and set iterations
to 1.
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Contrasts of treatment regimes

In practice we are interested in contrasts of the form E (ā1)− E (ā2)
for regimes ā1 and ā2.

To estimate this, add augmented rows with Ā = ā1 and another
set with Ā = ā2.

In the imputed datasets, calculate difference in sample means.

23 / 47



Inference for G-formula via MI estimator

How to estimate Var(µ̂) and conduct inference?

Ordinarily with MI we use Rubin’s rules.

Estimate variance in each imputation and average these, yielding
within-imputation variance V̂ .

Estimate variance of estimated means across M imputations,
yielding between-imputation variance B̂.

Then V̂ar(µ̂) = (1 + M−1)B̂ + V̂ .

Unfortunately this does not work here - Rubin’s variance estimator
is much larger than the true Var(µ̂).

This is due to a form of uncongeniality - the imputation and
analysis models are being fitted to different portions of the dataset.
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Multiple imputation for synthetic
samples/populations

Within the survey sampling field, there is an established literature
on using MI to impute partially or fully synthetic datasets.

The motivation here is concern over confidentiality if survey data
were released to analysts.

MI is used to impute/simulate variables for new/synthetic
individuals, ensuring confidentiality of original participants.

I will describe MI for generating synthetic samples/populations,
based on work by Raghunathan, Reiter and Rubin [3].

25 / 47



Inference for finite population setup

We have data from a sample of size nobs from a finite population
of size N.

The population data consist of P = (X ,Y ) where
X = (Xi ; i = 1, . . . ,N) and Y = (Yi ; i = 1, . . . ,N).

X corresponds to background / administrative information,
assumed known for all N members of the population.

Y is only observed in those sampled from the population.

Yinc = (Yi ; i = 1, . . . , nobs) denotes the observed values of Y from
the sample.

Yexc = (Yi ; i = nobs + 1, . . . ,N) denotes the unobserved values of
Y for those individuals not in the sample.
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Synthetic MI algorithm

Impute/simulate data for M synthetic populations of size N by
drawing their data from the posterior predictive distribution given
the observed sample (size nobs).

The population size N is typically too large to release to analysts.

Thus instead Raghunathan et al propose drawing a random sample
(of size nsyn we can choose) from each synthetic population, and
releasing these.
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Analysing samples from synthetic populations

We estimate the parameter of interest and a corresponding
variance from each imputation, as usual in MI.

The variance estimate is

(1 + M−1)B̂−V̂

where B̂ and V̂ are between and within-imputation variance.

Note this is not the same as Rubin’s MI variance estimator, which
is

(1 + M−1)B̂+V̂
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Estimating normal mean with known variance

Raghunathan et al demonstrated that Rubin’s variance estimator is
biased upwards (considerably) when used with the synthetic MI
approach.

As mentioned earlier, this is due to uncongeniality between the
imputation and analysis procedures.

To see concretely the issue, consider the simple setting of
estimating the mean µ of a normal distribution with known
variance σ2, based on a sample of size nobs with observed sample
mean Ȳ .
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Estimating normal mean with known variance

We use synthetic imputation, creating samples each of size nsyn.

To do this, for m = 1, . . . ,M, we first take a posterior draw
µ̃(m) ∼ N(Ȳ , σ

2

nobs
).

In imputation m, we impute for i = 1, . . . nsyn as

Yi(m) = µ̃(m) + εi(m) where εi(m) ∼ N(0, σ2)

We then estimate µ by its sample mean in each imputation and
average these across the M imputation:

µ̂ =
1

M

M∑
m=1

µ̂m
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Estimating normal mean with known variance

One can show (see pre-print) that

Var(µ̂) =
σ2

nsynM
+ (1 + M−1)

σ2

nobs

As M →∞, this converges to σ2

nobs
, the variance of the observed

sample mean.
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Estimating normal mean with known variance
The within-imputation variance is V̂ = σ2

nsyn
.

We show the between-imputation B̂ unbiasedly estimates
σ2

nobs
+ σ2

nsyn
.

Thus Rubin’s variance estimates

(1 + M−1)B̂+V̂ = (1 + M−1)

{
σ2

nobs
+

σ2

nsyn

}
+

σ2

nsyn

= Var(µ̂) +
2σ2

nsyn

While Raghunathan et al ’s variance estimator estimates

(1 + M−1)B̂−V̂ = (1 + M−1)

{
σ2

nobs
− σ2

nsyn

}
− σ2

nsyn

= Var(µ̂)
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Synthetic MI pooling rules for G-formula MI

In our pre-print, we use asymptotic theory for MI estimators of
Robins and Wang [4] to show that Raghunathan et al ’s variance
estimator is asymptotically unbiased for the G-formula via MI
estimator.
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Simulation setup

To evaluate G-formula via MI approach, we performed simulations.

nobs = nsyn = 500

10, 000 simulations per scenario.

We simulated with two intermediate follow-ups and a final
outcome Y .

Sequential imputation using mice package in R, with M synthetic
imputations.
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Simulation setup

L0 ∼ N(0, 1)

P(A0 = 1|L0) = expit(L0)

L1 ∼ N(A0 + L0, 1)

P(A1 = 1|A0, L0, L1) = expit(A0 + L1)

L2 ∼ N(A1 + L1, 1)

P(A2 = 1|A0,A1, L0, L1, L2) = expit(A1 + L2)

Y ∼ N(A2 + L2, 1)

We target E (Y 1,1,1)− E (Y 0,0,0), which has true value 3.
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Number of imputations M

The variance estimator (1 + M−1)B̂ − V̂ can be negative, due to
noise in B̂ as estimate of true between-imputation variance.

To examine how large M needs to be, we evaluated
M = {5, 10, 25, 50, 100}.

If on a given dataset the estimated variance was negative, we
added new sets of M imputations until it became non-negative.

We report the mean and max. value of M required across the
10, 000 simulations.
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Simulation results

M Bias Emp. SE Est. SE 95% CI Mean M Max M

5 -0.002 0.242 0.236 99.4 6.2 25
10 0.001 0.229 0.223 98.4 10.4 30
25 0.000 0.223 0.220 95.6 25.0 50
50 0.000 0.217 0.219 95.2 50.0 50

100 0.004 0.218 0.219 95.0 100.0 100

• Estimates are unbiased for true effect (= 3).

• For M ≥ 25 95% coverage is reasonable (but more
simulations needed).

• Negative variance issue is rare with M as low as 25, and never
occurred with M ≥ 50.
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Interim conclusions

MI provides a potentially convenient route to performing
G-formula, exploiting existing software for MI.

Inference seems reliable for M as low as 25, which is
computationally far fewer than number of bootstraps typically used
(e.g. 1, 000).
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G-formula and missing data

In practice there will typically (always?!) be some missing data on
baseline and time-varying confounders and treatment variables.

Given we’ve seen that MI can be used to perform G-formula when
data are complete, can we use it to impute any missing data as
well?

Yes. We impute the combination of the missing actual data and
the missing potential outcome data (in the augmented part).
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Imputing missing data with MI G-formula

There are (at least) two approaches:

1. Impute missing actual data and missing potential outcome
data in one go.

2. First impute missing actual data, then impute missing
potential outcome data conditional on these imputations.

We believe option 2 is more attractive.

We only have to impute the (usually) small amount of missing
actual data to create a monotone pattern. The remaining missing
(potential outcome) values are then imputed as before, with no
iterations required at the second stage.

This approach is well established in the context of using MI with
longitudinal data where the missingness pattern is almost
monotone.
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Simulation setup

To the previous setup, we made some values in L1, A1, L2, A2, Y
independently missing completely at random.

We varied the probability p = {0.05, 0.1, 0.25, 0.5} that values in
each were missing. Note p refers to the marginal probability that
values in each variable are missing.

We imputed missing values M = 50 using mice with default
settings.

For each imputed dataset, we then augmented as described
previously, and imputed missing potential outcomes once as
described earlier.

Inferences were then again based on Raghunathan’s variance
estimator.
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Simulation results

π Bias Emp. SE Mean est. SE 95% CI

0.05 -0.001 0.225 0.224 95.4
0.10 -0.003 0.231 0.231 95.3
0.25 -0.008 0.259 0.258 95.4
0.50 -0.011 0.360 0.361 95.0

• As expected, estimator becomes more variable with increasing
missingness.

• Raghunathan variance estimator and 95% CI performing well.
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Conclusions

• MI seems like an attractive route to implementing G-formula,
particularly when some data are missing.

• More details in our pre-print
https://arxiv.org/abs/2301.12026

• R package implementation which utilises mice in gFormulaMI

• Here we considered static (fixed) treatment regimes.

• For dynamic treatment regimes, specify treatment rules via
custom imputation method functionality in mice package.
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