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Paper

The work I will describe has just been published in SMMR:
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Motivation

• MI is very popular, for many reasons, part of which are the
simplicity of Rubin’s rules.

• If imputation and analysis models are ‘congenial’, and the
models are correctly specified, Rubin’s rules give valid
frequentist inferences (asymptotically):

• Rubin’s variance estimator is unbiased
• Confidence intervals attain nominal coverage
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Motivation

• Uncongeniality can arise in different ways, for example:
• the analysis model is only fitted to a subgroup
• one of the models includes an interaction but the other does

not
• reference based imputation in clinical trials

• Uncongeniality and model misspecification often lead to the
MI point estimator being biased.

• But there are situations where MI point estimator is unbiased
despite uncongeniality and/or misspecification.

• Under uncongeniality or misspecification, Rubin’s variance
estimator can be biased upwards or downwards, even when the
point estimator is unbiased [3, 4].
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Bootstrapping and MI

• In recent years a number of papers have investigated different
ways of combining bootstrapping with MI to produce
confidence intervals (CI):

• Schomaker and Heumann 2018 [5]
• Brand et al 2019 [1]
• von Hippel and Bartlett 2019 [6]

• We investigated CI length and coverage of the methods
recommended in these papers under uncongeniality or
misspecification in situations when despite these, the MI point
estimator is unbiased.
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MI and Rubin’s rules

• The imputer creates M imputations of the missing data, using
some model

• The analyst applies some complete data procedure to each,
obtaining estimates of some quantity of interest θ, which we
denote θ̂m, m = 1, . . . ,M, and variance estimates V̂ar(θ̂m)

• MI point estimator is θM = 1
M

∑M
m=1 θ̂m

• Rubin’s variance estimator is TM = WM +
(
1 + 1

M

)
BM where

WM =
1

M

M∑
m=1

V̂ar(θ̂m)

BM =
1

M − 1

M∑
m=1

(θ̂m − θM)2
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Congeniality - Meng

• Meng 1994 [3] defined the notion of ‘congeniality’ between
imputation model and the analyst’s incomplete and complete
data ‘procedures’.

• Imputation model and analyst’s complete data procedure are
congenial if:

• there exists a Bayesian model for which given complete data,
the posterior mean and variance for θ match the point and
variance estimate from the analyst’s complete data procedure

• the predictive distribution for the missing data given observed
from this Bayesian model is identical to that of the imputation
model being used
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Implications of congeniality

• Under congeniality, you can show that
• the posterior mean of θ given observed data under the

congenial Bayesian model equals limM→∞ θM = θ∞
• the posterior variance of θ given observed data under the

Bayesian model equals limM→∞ TM = T∞

• Therefore (θ∞,T∞) gives Bayesian posterior mean and
variance under this Bayesian model.

• Therefore for infinite M, Rubin’s rules = Bayesian inference,
and if the model is correct, asymptotically point estimator and
variance estimator are consistent.

• Rubin’s rules then make adjustments for the fact M is finite.
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MI boot Rubin

1. Impute M times

2. For m = 1, ..,M, generate B nonparametric bootstraps

3. θ̂m,b estimate from imputation m, bootstrap b

4. For imputation m, complete data variance estimated by

V̂arbs(θ̂m) = (B − 1)−1
B∑

s=1

(θ̂m,b − θ̃m)2

where θ̃m = 1
B

∑B
b=1 θ̂m,b

5. Rubin’s rules applied to θ̂m and V̂arbs(θ̂m), m = 1, ..,M

Inference is based on Rubin’s rules, so we don’t in general expect
valid inferences under uncongeniality or misspecification.
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MI boot pooled

Percentile interval based on values θ̂m,b, m = 1, . . . ,M,
b = 1, . . . ,B.

Under congeniality, M imputations are M independent draws from
posterior of missing data given observed under the Bayesian model.

Assuming analysis model is MLE, B bootstraps on each imputed
dataset is equivalent to B draws from posterior of θ conditional on
each imputed complete dataset.

Thus under congeniality the M × B values of θ are draws from the
posterior of θ given observed data.

14 / 28



MI boot pooled

So under congeniality, MI boot pooled percentile interval =
posterior credible interval for Bayesian model.

B is normally chosen large. If you choose M small, you can show
the variance across θ̂m,b is too small.

With M = 1, your posterior variance is for the one time imputed
complete data, not the observed data posterior variance!

Under uncongeniality or misspecification, no reason why the CI
should have correct coverage.
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Boot MI percentile

1. Bootstrap B times

2. For b = 1, ..,B, impute M times, and obtain estimates θ̂b,m

3. Let θb = 1
M

∑
m θ̂b,m

4. Form percentile intervals based on θb

This is just application of bootstrap to the MI estimator, so we
should expect correct coverage even under uncongeniality or
misspecification.
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Boot MI with M = 1

Brand et al 2019 [1] investigated many different combination
methods (including a number not mentioned here) as point
estimator.

They recommended Boot MI percentile confidence intervals with
M = 1.

The problem with this is that the point estimator and interval are
inefficient with M = 1.

Thus the intervals are wider than they need to be.

In fact, we discovered an additional curious issue with this
approach when you use percentile rather than Wald type intervals
(see sim results and paper).
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Boot MI for inference under uncongeniality

Boot MI is the only approach we expect to give CIs with correct
coverage under uncongeniality/misspecification (assuming point
estimator is unbiased).

We need relatively large B for reliable estimates of variance.

If we choose M small, point estimator is inefficient and intervals
are wider than necessary.

If we choose M large, B ×M is large, and Boot MI is
computationally costly!
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von Hippel’s Boot MI proposal

von Hippel [6] proposed using Boot MI, with θBM = B−1
∑B

b=1 θb.

We can express

θ̂b,m = θ∞ + cb + dbm

where Var(cb) = Var(θ∞) = σ2
∞ and Var(dbm) = σ2

btw

Then

θBM = θ∞ +
1

B

B∑
b=1

cb +
1

BM

B∑
b=1

M∑
m=1

dbm

and so

Var(θBM) =

(
1 +

1

B

)
σ2
∞ +

1

BM
σ2

btw
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von Hippel’s boot MI proposal

We can fit a one way random intercepts model to the estimates
θ̂b,m to estimate σ2

∞ and σ2
btw, and insert into the preceding

expression.

Since large B is required for reliable variance estimates, von Hippel
suggested using M = 2. With M = 2, the approach becomes
computationally much less costly.

Derivations do not rely on assumptions of congeniality or correct
specification, so variance estimator should be consistent even
under uncongeniality or misspecification.
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Simulation setup

I will briefly talk about simulations on reference based imputation
for trials. See the paper for more simulation scenarios.

Sample size n = 500.

Binary ‘treatment’ randomly assigned.

Y1,Y2 (baseline,follow-up) generated from correlated bivariate
normal, with mean of Y2 dependent on ‘treatment’.

50% of Y2 values made missing completely at random.

Analysis model is linear regression of Y2 on treatment and Y1, and
interest focuses on the treatment coefficient.

10,000 simulations
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Imputation methods

First we imputed Y2 using normal linear regression under MAR
(see paper).

Next we impute Y2 using the jump to reference approach,
proposed by Carpenter et al [2].

This imputes active arm patients Y2 assuming they switched to
control treatment (in a particular way).

The imputation model is uncongenial with the analysis model.
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Jump to reference results

Median
M B Time (s) CI width CI cov.

MI Rubin 10 0.05 0.251 99.78
MI boot Rubin 10 1000 13.6 0.251 99.78
MI boot pooled 10 1000 13.7 0.237 99.63
Boot MI % 10 1000 36.8 0.157 96.06
Boot MI % 1 1000 3.9 0.211 99.40
von Hippel 2 1000 7.6 0.151 95.26
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Conclusions

• Uncongeniality and misspecification often imply the MI
estimator is biased.

• But in some cases the MI estimator can be unbiased even
under uncongeniality and/or misspecification. In these cases
we may want to obtain sharp valid inferences.

• MI then bootstrap is not valid generally under uncongeniality
or misspecification.

• In contrast, certain types of bootstrap then MI are valid.

• von Hippel’s boot MI is attractive on computational efficiency
grounds.

• It is implemented in the R package bootImpute, including
parallel core functionality.
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