Non-proportional hazards – an introduction to their possible causes and interpretation

Jonathan Bartlett
University of Bath
thestatsgeek.com

29th April 2021
The Cox model and proportional hazards

Interpreting changes in hazard

Interpreting changes in treatment group HRs

HR under proportional hazards
The Cox model and proportional hazards
Randomised trial with control $TRT = 0$ and active $TRT = 1$ patients.

We measure time to event T.

Some patients are censored: $\Delta = 1$ means event observed, $\Delta = 0$ means event censored.
The hazard function

The hazard function at time t, $h(t)$ is the instantaneous rate of failure among survivors at time t:

$$h(t) = \lim_{\Delta t \to 0} \frac{P(t \leq T < t + \Delta t | T \geq t)}{\Delta t}$$

It is the failure rate at time t conditional on not yet failing (the $T \geq t$ bit).
The Cox model

Cox’s famous model, if we put only TRT as covariate, assumes that

\[h(t|TRT) = h_0(t) \exp(\beta \cdot TRT) \]

\(h_0(t) \) is an arbitrary baseline hazard function.

For any \(t \), the hazard ratio (HR) comparing active to control is

\[
\frac{h(t|TRT = 1)}{h(t|TRT = 0)} = \frac{h_0(t) \exp(\beta)}{h_0(t) \exp(0)} = \exp(\beta)
\]

which is independent of \(t \).

Hazards between groups are proportional over time (PH).

If this is violated, we say hazards are not proportional (NPH).
An example of NPH

The PH assumption can be assessed in various ways.

In recent years that have been various trials where NPH is indicated.

E.g. the IPASS study (PFS Schoenfeld plot shown from Lin et al. (2020)):
The Cox model / log rank test has optimal power under PH. Under NPH, should we use a different test, and if so which?

Under NPH how should we quantify the treatment effect? Should the effect estimation be strongly tied to the hypothesis test?

What can cause NPH, and how should changes in the HR over time be interpreted?
Interpreting changes in hazard
Interpreting changes in hazard and HRs

Interpreting changes over time in hazards and HRs is quite tricky, e.g. see Hernán (2010) ‘The Hazard of Hazard Ratios’.

The source of the difficulty is due to the fact the hazard is a conditional (on survival) quantity and because of the ubiquitous presence of unmeasured/unknown patient level factors which influence outcome (frailty).

I will demonstrate through a series of simple simulations, but see Chapter 6 of O. Aalen, Borgan, and Gjessing (2008) for further details.
Consider a single arm study.

Suppose first that the hazard for time to event is a constant 1 for all patients, i.e. the hazard for each patient is $h(t) = 1$ for all t.

So the hazard does not change with time in any patient.

For simplicity, we will simply censor everyone who has not yet failed at $t = 3$

We run our study, and look at the cumulative hazard to see if the hazard is constant over time
A simple example

The slope is constant at 1 → the hazard is constant.
Adding frailty (unmeasured prognostic covariates)

- In reality there will always exist factors which affect outcome.
- Suppose there exists some gene (as yet unknown and hence unmeasured) which affects time to event.
- We will code the gene Z as a binary variable, with 50% $Z = 0$ and 50% $Z = 1$.
- Then we assume

\[
h(t|Z = 0) = 0.5 \\
h(t|Z = 1) = 1.5
\]

- For each patient, the hazard is 0.5 or 1.5, and doesn’t change over time.
- We again run our study, and estimate the hazard function over time in the whole group.
Cumulative hazard with frailty

The slope (hazard) appears to decrease over time
Interpreting changes in hazard over time

- How do we interpret the apparent change in hazard over time?
- The most obvious that the hazard individuals experience decreases over time.
- But we know we generated the data so that each individual’s hazard is constant over time.
- What’s going on?
Distribution of Z in risk sets
The odd effects of frailty

- At $t = 0$, 50% of patients are $Z = 0$ and 50% are $Z = 1$
- The $Z = 1$ patients have higher hazard, so they fail more quickly
- At times $t > 0$, among those still at risk, the mean/proportion of patients with $Z = 1$ is less than 50%.
- So the group/population level hazard decreases, even though the individual level hazards do not change over time.
- This is the effect of frailty - unobserved covariates which influence hazard.
- Our plot is looking at the population or marginal (to Z) hazard function, not the individual hazard.
Implications of frailty

- Interpreting changes in hazards, over time, is tricky.
- Changes can be a result of a combination of changes in individual hazards over time and frailty/selection effects.
- With a single failure time per patient, from the data alone we cannot really disentangle what is causing the observed changes in population hazard.
- What implications does this have for hazard ratios comparing treatment groups?
Interpreting changes in treatment group HRs
Now we return to the arm trial setting.

The true (i.e. without assuming any model) population/marginal HR at t, $HR(t)$, comparing active to control is

$$HR(t) = \frac{h(t|TRT=1)}{h(t|TRT=0)} = \lim_{\Delta t \to 0} \frac{\frac{P(t \leq T < t + \Delta t | T \geq t, TRT=1)}{\Delta t}}{\frac{P(t \leq T < t + \Delta t | T \geq t, TRT=0)}{\Delta t}}$$

$HR(t)$ is comparing survivors in active arm at time t with survivors in control arm at time t.

The key issue now is whether such a comparison is fair - are these two groups of survivors comparable in respect of baseline factors (unmeasured and measured)?
Imbalance between treatment groups survivors in pictures...

Taken from Stensrud et al. (2019).
Time-dependent HRs are generally subject to confounding

- In general the answer is no due to frailty effects (i.e. Z).
- The two groups of survivors at time \(t > 0 \) have different distributions of these baseline factors.
- \(HR(t) \), and measures derived from it (e.g. piecewise HRs, weighted HRs) are generally not valid causal measures of treatment effect - they are subject to confounding.
- These concerns have led to some researchers, particularly those from a causal inference background, rejecting use of HRs (especially time-dependent ones) as valid measures of treatment effect. (Hernán 2010; O. O. Aalen, Cook, and Røysland 2015; Martinussen, Vansteelandt, and Andersen 2018; Stensrud et al. 2019)
Interpreting changes in treatment group HRs

- We will consider two types of NPH: delayed effects and diminishing effects
- We will simulate data so we know the truth
- We will compare this with what we can observe/estimate from the data
Recall the IPASS Schoenfeld plot.

The apparent interpretation is that initially chemo (control) is better for patients, but later Gefitinib is better.

The estimated HR in the first 6 months is 1.115 and from 6 months onwards is 0.343 (Lin et al. 2020).
Simulated apparent delayed effect

Results from some simulated data:

- Benefit of active treatment appears to emerge later in f/up
- In fact, active even seems slightly worse than control initially
The data were simulated with

\[h(t|Z, TRT) = \exp(Z - TRT + 2Z \times TRT) \]

True log HR for \(Z = 0 \) patients is -1, or HR of \(\exp(-1) = 0.4 \).

True log HR for \(Z = 1 \) patients is +1, or HR of \(\exp(1) = 2.7 \).

The individual level HRs for treatment effects do not vary over time!

The time changing population level HR is due to frailty factor \(Z \) and the between patient heterogeneity in treatment effects.
Distribution of Z in risk sets by treatment group

The risk sets are imbalanced with respect to Z
IPASS PFS by EGFR mutation status

From Mok et al. (2009)
Here we understood about EGFR mutation status \((Z)\) and (partially) measured it, so we can perform analyses separately by mutation status.

But if we hadn’t known about EGFR it, or hadn’t measured it, we might conclude (possibly wrongly) that treatment effects at the individual patient level vary over time.
Apparently diminishing effects

Results from a second simulated dataset:

\[HR(t) \] is getting closer to 1 as time increases - apparently treatment effect is diminishing with time
How the data were simulated

- The data were simulated with

\[h(t|Z, TRT) = \exp(-TRT + \log(Z)) \]

where \(Z \) is a gamma distributed frailty variable with mean and variance 1.

- The true log HR comparing active to control, conditional on frailty \(Z \), is -1, equating to a HR of \(\exp(-1) = 0.4 \).

- The individual level HR treatment effects do not vary over time, and are the same for all patients.

- The apparently diminishing treatment effect is again due to frailty.
Distribution of Z in risk sets by treatment group

Again, the risk sets are imbalanced with respect to Z.
HR under proportional hazards
Ok, there may be subtleties in interpreting time-specific HRs and weighted averages of these.

But if the proportional hazards assumption holds (conditional on whatever covariates we adjusted for), we know how to interpret the constant HR, right?

Some (O. O. Aalen, Cook, and Røysland 2015; Martinussen, Vansteelandt, and Andersen 2018; Stensrud et al. 2019) have argued that the (constant) HR is not valid causally as a hazard ratio.

This is because you could still have a mixture of time-changing individual level effects and frailty/selection effects that together give proportional marginal HR over time.
Marginal proportional hazards with time-varying individual HR

See Stensrud et al. (2019) for setup that results in PH marginal to Z but NPH conditional on Z (‘causal HR’).
Conclusions

- Causally interpreting HRs is difficult, whether they are constant over time or not.

- *Stensrud et al.* (2019) is a very nice overview of what I’ve been talking about.

- Period specific HRs and weighted HRs (as suggested for use with MaxCombo test) can only be interpreted causally under implausible untestable assumptions that frailty is not present (*Bartlett et al.* 2020).

- How else to quantify/characterise treatment effects?
 - risk differences/ratios or RMST differences/ratios at sensible landmark times
 - unlike hazard based measures, these do not suffer from the frailty/selection bias issue

