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Motivation - Aalen et al 2015 [6]
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Aalen et al 2015

“Despite the fact that treatment assignment is random-
ized, the hazard ratio is not a quantity which admits a
causal interpretation in the case of unmodelled heterogene-
ity.”

“This makes it unclear what the hazard ratio computed
for a randomized survival study really means. Note, that
this has nothing to do with the fit of the Cox model. The
model may fit perfectly in the marginal case with X as the
only covariate, but the present problem remains.”
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Causal inference using potential outcomes

We will first review causal inference using the potential or
counterfactual outcomes framework.

We will draw heavily on Hernán and Robins’ excellent (free so far)
book, Causal Inference [1].

Consider some well defined population of invididuals.

Each individual will receive one of two interventions or treatments,
coded 0 and 1.

We will measure an outcome Y , for illustration taken to be binary
for the moment.
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Potential outcomes

Y 0 Y 1

Rheia 0 1
Kronos 1 0
Hades 1 1
Zeus 1 0
Athena 0 0
Aphrodite 1 0
Hermes 0 1

• Y 0
i and Y 1

i are the
potential outcomes for
individual i under treatment
level 0 and 1.

• Somehow it is determined
which treatment each
individual will receive.

• We let Zi = 0 or Zi = 1
denote the treatment
individual i receives.

• The outcome we observe is
Y 0
i if Zi = 0 and Y 1

i if
Zi = 1 (consistency).
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Individual level causal effects

There is a causal effect for individual i if Y 0
i 6= Y 1

i .

An individual level causal effect can be quantified as some contrast
of Y 0

i with Y 1
i .

e.g. Y 1
i − Y 0

i .
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Observable data

Z Y 0 Y 1

Rheia 0 0 .
Kronos 1 . 0
Hades 1 . 1
Zeus 0 1 .
Athena 1 . 0
Aphrodite 1 . 0
Hermes 0 0 .

• For each individual we get
to see only one of their
potential outcomes.

• Which one depends on the
value of Z .

• Hence the problem of causal
inference can be viewed as a
missing data problem.
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Population level causal effects

Without strong untestable assumptions we cannot
identify/estimate individual level causal effects.

Under weaker assumptions we can estimate population level
casual effects.

These are contrasts of a functional of the population distributions
of Y 0 and Y 1.

e.g. E (Y 1
i )− E (Y 0

i )

They are sometimes referred to as average causal effects,
because E (Y 1

i )− E (Y 0
i ) = E (Y 1

i − Y 0
i ).

I prefer the term population level effects, as other measures are
not always averages of individual level effects.
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What can we estimate in practice?

Suppose that treatment Zi is randomly assigned, so Zi is
independent of (Y 0

i ,Y
1
i ) across the population.

In missing data parlance, the data are missing completely at
random.

Then f (Y 1
i ) = f (Yi |Zi = 1) and f (Y 0

i ) = f (Yi |Zi = 0).

In particular E (Y 0
i ) = E (Yi |Zi = 0) and E (Y 1

i ) = E (Yi |Zi = 1).

Hence we can estimate for example E (Y 1
i )− E (Y 0

i ) by

Ê (Yi |Zi = 1)− Ê (Yi |Zi = 0).
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Effect measures for binary outcomes

For binary outcome measures, the most common effect measure
estimators used are:

• risk difference (RD): R̂D = Ȳ 1 − Ȳ 0

• risk ratio (RR): R̂R = Ȳ 1/Ȳ 0

• odds ratio (OR): ÔR = Ȳ 1

1−Ȳ 1 /
Ȳ 0

1−Ȳ 0

where Ȳ 0 and Ȳ 1 denote the sample proportions of 1s in the two
treatment groups.
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Stochastic vs. deterministic potential outcomes

Potential outcomes (POs) can be assumed to be deterministic or
stochastic [1].

Deterministic POs: for individual i , Y 0
i and Y 1

i are fixed.

Stochastic POs: for individual i , Y 0
i and Y 1

i are draws from some
probability distribution.

Quantum physics implies (apparently!) POs can’t be truly
deterministic.

Causal inference literature tends towards deterministic, often
implicitly.
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Stochastic vs. deterministic binary potential
outcomes

In the case of a binary outcome:

Stochastic POs: Y 0
i ∼ Bernoulli(π0

i ), Y 1
i ∼ Bernoulli(π1

i ).

‘Purely’ stochastic POs: π0
i = π0, π1

i = π1 for all i . This is
implausible due to observed variation in risk between individuals.

‘Partly’ stochastic POs: π0
i = g0(X̃i ), π1

i = g1(X̃i ) for existent
baseline variables X̃i .

Deterministic POs: π0
i = h0(X̃i ) ∈ {0, 1}, π1

i = h1(X̃i ) ∈ {0, 1}.
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Causal effect measures - purely stochastic POs

Purely stochastic POs: Y 0
i ∼ Bernoulli(π0), Y 1

i ∼ Bernoulli(π1).

Y 1
i − Y 0

i , is itself stochastic, so there is no fixed value to estimate.

Ȳ 0 and Ȳ 1 estimate π0 and π1, and R̂D estimates π1 − π0.

π1 − π0 is the common individual level causal RD.

RR and OR can be interpreted as common individual level causal
effects.

But we have said purely stochastic POs, with no variation in risk,
are implausible!
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Causal effect measures - partly stochastic POs

‘Partly’ stochastic POs: π0
i = g0(X̃i ), π1

i = g1(X̃i ) for baseline
(measured and unmeasured) variables X̃i .

Y 1
i − Y 0

i , is again stochastic.

π1
i − π0

i now varies across individuals, in general.

R̂D estimates Ei (π
1
i )− Ei (π

0
i ) = E (π1

i − π0
i ).

This can be interpreted as a population level causal RD, or average
individual level effect.

R̂D can only be interpreted as the individual level RD if π1
i − π0

i

does not vary across i .
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Causal effect measures - partly stochastic POs

R̂R estimates
Ei (π

1
i )

Ei (π
0
i )

.

This is the population level RR.

Hernán and Robins [1] note that

Ei (π
1
i )

Ei (π0
i )

= Ei

[
π0
i

Ej(π0
j )

π1
i

π0
i

]

so that it can be viewed as a weighted average of the individual
level risk ratios. Not clear though that this is useful though.

Again only if π1
i /π

0
i were identical across i could R̂R be interpreted

as a common individual level RR. And if individual level RD is
common, RR cannot be, and vice-versa.
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Causal effect measures - partly stochastic POs

ÔR estimates population level OR:
Ei (π

1
i )

1−Ei (π
1
i )
/

Ei (π
0
i )

1−Ei (π
0
i )

Due to non-collapsibility of the OR (Fine Point 4.3 of [1]), the
population level OR does not equal the individual level OR even
when the latter is identical across individuals.

If the individual level OR were identical across individuals, we need
to condition adjust (correctly) on all prognostic factors X̃i to
estimate it.

No reason to think that we will ever have all the prognostic
variables measured, and if we did, that we correctly model their
effects.
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Causal effect measures - deterministic POs

Y 1
i − Y 0

i is 0, 1, or -1, and is now fixed for each individual,
although they are not identifiable.

R̂D estimates population RD Ei (Y
1
i )− Ei (Y

0
i ), and similarly for

R̂R and ÔR.

There is no longer an individual level RD, RR, or OR, since there is
no notion of randomness in the outcomes of an individual.

Probability models are still used for inference - randomness is due
to random sampling of individuals from the population into the
sample.
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Population vs. individual effects

Some advocate adjusting for covariates and interpreting the
resulting estimate as an individual level effect (e.g. Harrell [4]).

But this relies on assuming:

• the chosen effect measure is common across individuals

• we correctly model covariate effects

Because of these issues, others choose instead to target population
(marginal) effects (e.g. Steingrimsson et al [3]). An issue here
though is whether samples are representatitive of target population.

Of course one could estimate sub-population effects, allowing for
the possibility/fact(?!) that these will vary across sub-populations.
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Conclusions to take forward

Even in a randomised trial, to estimate individual level causal
effects requires implausible and untestable assumptions.

Instead, we can more plausibly / reliably estimate population level
effects.

With detemrinistic POs, these are some contrast of the population
distributions f (Y 0

i ) and f (Y 1
i ).

With stochastic POs, these are contrasts of population
distributions of parameters indexing stochastic PO distributions,
e.g. f (π0

i ) and f (π1
i ).

In either case, they tell us about how the population distribution of
outcomes would change if we gave treatment 1 to the population
rather than treatment 0.
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Time to event outcomes

Now suppose the outcome T is a time to event outcome.

T 0
i and T 1

i are potential times to event under control and active
treatments, for individual i .
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The hazard function and Cox model

The hazard function is

λ(t) = lim
∆t→0

P(t ≤ T ≤ t + ∆t|T ≥ t)

∆t

It is the instantaneous event rate at time t among those individuals
who have not yet ‘failed’.

Cox’s model with treatment group as covariate assumes that

λ(t|Z = 1)

λ(t|Z = 0)
= exp(β)

i.e. the hazard ratio is constant over time.

26 / 46



The hazard ratio

The hazard ratio at time t comparing active to control treatments
is

HR(t) =
lim∆t→0 P(t ≤ T ≤ t + ∆t|T ≥ t,Z = 1)/∆t

lim∆t→0 P(t ≤ T ≤ t + ∆t|T ≥ t,Z = 0)/∆t

This can be rewritten [5] in terms of POs as

HR(t) =
lim∆t→0 P(t ≤ T 1 ≤ t + ∆t|T 1 ≥ t)/∆t

lim∆t→0 P(t ≤ T 0 ≤ t + ∆t|T 0 ≥ t)/∆t
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Hazard ratio

HR(t) =
lim∆t→0 P(t ≤ T 1 ≤ t + ∆t|T 1 ≥ t)/∆t

lim∆t→0 P(t ≤ T 0 ≤ t + ∆t|T 0 ≥ t)/∆t

So, HR(t) is comparing short term risk in those who would survive
to t under active (T 1 ≥ t) to those who would survive to t under
control (T 0 ≥ t).

Randomisation ensures baseline covariates X are balanced (in
distribution) between treatment groups.

But not necessarily that there is balance between the two groups of
survivors at times t > 0.
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Herná 2010 - the hazards of hazard ratios

• Because of this issue, in
2010 Hernán argued that
the HR has a built in
‘selection bias’.

• e.g. the Women’s Health
Initiative randomised 16,000
women to hormone therapy
or placebo, and followed
them up for coronary heart
disease CHD.

• So, is hormone therapy
protective after 5 years?

Time (years) HR

0-1 1.81
1-2 1.34
2-3 1.27
3-4 1.25
4-5 1.45
5- 0.7
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The hazards of hazard ratios

As argued by Hernán [2], it is entirely possible that hormone
therapy could increase risk for CHD for some women.

These women will tend to experience CHD earlier in the hormone
therapy group.

At later times, the women still event free (at risk) in the two
groups then differ in terms of their risk for CHD.

The HR at years 5+ of 0.7 could therefore purely reflect selection
effects, rather than it meaning the individual level effect of
treatment switches direction over time.
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Aalen et al ’s critique - part 1

Aalen et al gives a number of perspectives for why the HR is not a
valid causal effect, even if HR(t) is constant over time.

The first describes Hernán’s point in more detail - at times t > 0
the HR(t) is not making a fair comparison, due to selection effects.

Aalen et al show that survivors in two treatment groups are
balanced w.r.t. baseline variables, i.e. X̃⊥⊥Z |T > t only if

λ(t|X̃ ,Z ) = a(t, X̃ ) + b(t,Z )

for functions a(., .) and b(., .).
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Aalen et al ’s critique - part 2

This issue can also be viewed via direct acyclic graphs (DAGs).
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Aalen et al ’s critique - part 2

The hazard ratio conditions on survival to t.

We are conditioning on a collider, and open up a path between
baseline variables and treatment group.

34 / 46



Aalen et al ’s critique - part 3

Aalen et al then consider an analysis based on the notion of an
individual level hazard function.

This corresponds to our notion of stochastic POs, with individual i
having hazards λ0

i (t) and λ1
i (t) under control and active

treatments.

Suppose:

λ0
i (t) = λ0(t)

λ1
i (t) = λ0(t) exp(β)

Then the HR exp(β) represents the (common) individual level
effect of treatment.

It could be estimated by fitting a Cox model to the observed data.
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Aalen et al ’s critique - part 3 continued

But the preceding model is completely implausible - individual
hazard will depend on individual baseline variables X̃ .

Suppose:

λ0
i (t) = g(X̃i , t)

λ1
i (t) = g(X̃i , t) exp(β)

for baseline variables X̃ and function g(., .).

Then exp(β) represents the (common) individual level effect of
treatment
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Aalen et al ’s critique - part 3 continued

In practice you can never hope to measure all the components of
X̃ .

Like logistic regression, the Cox model is not collapsible.

If you marginalise over X , you lose proportional hazards (in
general), and the resulting HR coefficient for Z you estimate is not
equal to exp(β).

Hence you can never hope to estimate the assumed common
individual level effect exp(β) from the trial.

This is very reasonable, and is in agreement with our conclusions
about hoping to estimate (assumed common) individual level
effects for binary outcomes.
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HR(t) is a valid causal contrast
We can express the hazard as

λ(t) =
f (t)

S(t)

where f (t) is the density function and S(t) =
∫∞
t f (u)du is the

survival function.

Let f 0(t) and f 1(t) denote the densities of the potential failure
times T 0 and T 1, and S0(t) and S1(t) the corresponding survival
functions. Then

HR(t) =
f 0(t)/S0(t)

f 1(t)/S1(t)

Thus HR(t) is a contrast of a function of the two population
densities f 0(t) and f 1(t), and is a valid population level causal
effect.
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Interpreting HR(t)

HR(t) is a population level causal effect.

HR(t) is the ratio of instantaneous event rates in survivors at time
t if we assign the population to level 1 vs. level 0 of the treatment.

This doesn’t rely on any assumption of proportional hazards.
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Interpreting HR(t)

Stochastic POs: due to the aforementioned selection/confounding
issues HR(t) is not an individual level effect at time t (except
under strong untestable assumptions).

Therefore, changes in HR(t) should not be interpreted as
representing solely changes in individual level treatment effect over
time.

Deterministic POs: HR(t) as defined here is not the HR in the
subpopulation which would survive to t under both treatment 0
and treatment 1.
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What if HR(t) is constant over time?

If HR(t) appears constant over time, can it be interpreted as
meaning the individual level treatment effect is constant over time?

No.

Changes in HR(t) can be some mixture of selection effects and
time-varying individual level effects.

However, HR(t) = exp(β) a constant implies S1(t) = S0(t)exp(β),
and so

exp(β) =
log{S1(t)}
log{S0(t)}

But this interpretation is not nice nor easy to communicate.
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Is HR a useful causal effect measure?

HR(t) is a valid causal effect measure, but is it answering a useful
question?

⇒ For individuals, the answer seems no. For policy makers at the
population level, maybe.

If marginally hazards are (approximately) proportional, is HR
useful?

⇒ For individuals and policy makers, maybe. But even here,
important to note HR is not a risk ratio, as is sometimes
implied [7].

Other measures, e.g. risk differences or ratios for a landmark time,
or differences/ratios of restricted mean survival time, may be
preferable.
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Conclusions

• Standard RCTs can estimate population level effects, but not
individual level causal effects.

• HR(t) is a valid population level causal effect, but its
interpretation is subtle.

• HR(t) is not an individual level causal effect, except under
strong, implausible, and untestable assumptions.

• Changes in HR(t) should not be interpreted simply as changes
in individual level treatment effect over time.

• Even when HR(t) is constant, alternatives to Cox’s model
may be preferable for quantifying causal effects.

• These slides, plus some discussion with Aalen at
www.thestatsgeek.com
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