Covariate adjustment and estimation of mean outcome in randomised trials

Jonathan Bartlett www.thestatsgeek.com

Department of Mathematical Sciences University of Bath UK

International Biometric Conference, 13th July 2018

Acknowledgements

- This work was conducted while I was employed at the Statistical Innovation Group at AstraZeneca
- Thanks to Prof. Stijn Vansteelandt, University of Ghent, for helpful input on this work
- Thanks to AstraZeneca Sirocco trial study team for use of data in illustrative example used in the paper

Outline

Motivation

Baseline adjusted mean estimation

Simulations

Conclusions

、ロ 、 、 (日)、 (目)、 (目)、 (目)、 (日)、 (1),

Motivation

- Consider a randomised trial which samples n patients from a population and randomises patients to control Z = 0 or active treatment Z = 1
- We measure an outcome Y on each patient, and typically also some baseline covariates X
- Often the primary analysis adjusts for X in the analysis of outcome Y
- This is typically performed by fitting a regression model for *Y*, with *X* and *Z* as covariates
- By using X, we can adjust our treatment effect estimate for chance imbalances in the X distribution between randomised groups, thereby improving statistical power

Motivation

 As well as the estimated treatment effect, the crude mean outcome in each treatment group is also almost always (and should be) reported. For treatment group Z = z, this is:

$$\hat{\mu}_1(z) = \frac{\sum_{i=1}^n 1(Z_i = z) Y_i}{\sum_{i=1}^n 1(Z_i = z)}$$

• Because of randomisation, $\hat{\mu}_1(z)$ unbiasedly estimates

$$E(Y|Z=z)=E(Y^z):=\mu(z)$$

where Y^z is a patient's potential outcome were they to receive treatment z

 μ(z) is the average outcome were the population all to be assigned to receive treatment z

Questions

- Can we use our covariate adjusted model to estimate $\mu(z)$?
- If so, how, and what would be the benefit of doing so?

Outline

Motivation

Baseline adjusted mean estimation

Simulations

Conclusions

Outcome regression model

• Assume an outcome model is defined, part of which specifies that (for example)

$$g(E(Y|X,Z)) = \beta_0 + \beta_X^T X + \beta_Z Z$$

for some link function g(.)

- We fit the model to the trial data, and obtain estimates $\hat{\beta}_0,$ $\hat{\beta}_X,$ $\hat{\beta}_Z$

Mean outcome at the mean covariate values

• An approach sometimes used to obtain X adjusted estimates of mean outcome under treatment z is to calculate

$$g^{-1}(\hat{\beta}_0+\hat{\beta}_X^T\hat{\mu}_X+\hat{\beta}_Z z),$$

setting X equal to its sample mean $\hat{\mu}_X$

- Assuming the outcome model is correctly specified, this is a consistent estimator of $E(Y|X = \mu_X, Z = z)$
- But in general, even though X and Z are independent in a randomised trial,

 $\mu(z) = E(Y^z) = E(Y|Z=z) \neq E(Y|X=\mu_X, Z=z)$

• The quantity being targeted arguably makes little sense for non-linear models when some covariates are categorical

Baseline adjusted estimates of $\mu(z)$

 To estimate µ(z) using our model which adjusts for X, we note that

$$\mu(z) = E(Y^z) = E\{E(Y^z|X)\}$$

- The inner expectation can be estimated using our fitted regression model by $g^{-1}(\hat{\beta}_0 + \hat{\beta}_X X + \hat{\beta}_Z z)$
- The outer expectation is then with respect to the distribution of *X*
- This motivates the estimator

$$\hat{\mu}_2(z) = \frac{1}{n} \sum_{i=1}^n g^{-1} (\hat{\beta}_0 + \hat{\beta}_X X_i + \hat{\beta}_Z z)$$

Qu and Luo 2015

- $\hat{\mu}_2(z)$ was proposed in the randomised trials context in 2015 by Qu and Luo
- They proposed it as an estimator of the following parameter:

$$n^{-1}\sum_{i=1}^n g^{-1}(\beta_0+\beta_X X_i+\beta_Z z)$$

- This 'parameter' is defined in terms of the covariate values of the particular sample of patients and the population parameters β₀, β_X, β_Z. Its value thus varies from trial sample to trial sample, if the X_i are not fixed
- Its values also differs, even if the outcome model is correctly specified, from $n^{-1} \sum_{i=1}^{n} Y^{z}$, the mean outcome for the trial sample were they to be given treatment z
- We will instead focus on estimation of the population parameter $\mu(z)$...

Intuition for $\hat{\mu}_2(z)$

- $\mu_2(z)$ uses predictions from all patients to estimate $\mu(z)$, and not only those randomised to Z = z
- We have the potential to gain a more precise estimate of $\mu(z)$ because randomisation implies patients not randomised to z give us useful information about the (common) distribution of χ
- $\hat{\mu}_2(z)$ is a standardization / G-computation type estimator

Consistency of $\hat{\mu}_2(z)$

- In general, $\hat{\mu}_2(z)$ is only consistent for $\mu(z)$ if the outcome model is correctly specified
- Suppose the outcome model is a canonical GLM. Then the estimation equations are of the form:

$$0 = \sum_{i=1}^{n} \{Y_i - h(X_i, Z_i, \hat{\beta})\} \begin{pmatrix} 1 & X_i & Z_i \end{pmatrix}^T$$

- This implies that the sample mean of the predictions in each treatment group match the sample mean of the outcomes in that treatment group
- It follows for canonical GLMs that $\hat{\mu}_2(z)$ is consistent for $\mu(z)$ even if the model is misspecified
- It is also consistent with negative binomial reg., provided the conditional mean function is correctly specified

Efficiency of $\hat{\mu}_2(z)$

- Using semiparametric theory, one can show that when the outcome model is correctly specified, $\hat{\mu}_2(z)$ is the semi-parametric efficient estimator
- Thus in particular in this case it is more efficient than $\hat{\mu}_1(z)$
- This accords with intuition of using additional information about the common X distribution across all treatment groups due to randomisation

Variance estimation for $\hat{\mu}_2(z)$

- Qu and Luo described a delta method variance estimator $\widehat{Var}(\hat{\mu}_2(z)|\mathbf{X})$ for $\hat{\mu}_2(z)$ where the target of inference is their previously described alternative parameter
- In most trial settings, the covariates would not be fixed in repeated sampling/trials
- To obtain a variance estimator for $\mu_2(z)$ as an estimator of $\mu(z)$ we can use:

$$\widehat{\mathsf{Var}}(\hat{\mu}_{2}(z)|\mathbf{X}) + n^{-2} \sum_{i=1}^{n} \{g^{-1}(\hat{\beta}_{0} + \hat{\beta}_{X}^{T}X_{i} + \hat{\beta}_{Z}z) - \hat{\mu}_{2}(z)\}^{2}$$

15/25

A third estimator

 Existing semiparametric theory for robust covariate adjusted estimation in trials can be used to construct a third estimator:

$$\hat{\mu}_{3}(z) = \hat{\mu}_{1}(z) - n^{-1} \sum_{i=1}^{n} \left[\frac{1(Z_{i}=z) - \hat{\pi}_{z}}{\hat{\pi}_{z}} h(X_{i}, z) \right]$$

for some function h(X, z)

- $\hat{\mu}_3(z)$ is consistent irrespective of choice of h(X, z)
- This is because $E(1(Z = z)|X) = \pi_z$, so the added term is always mean zero

Efficiency of $\hat{\mu}_3(z)$

• Efficiency of $\hat{\mu}_3(z)$ is optimised by choosing

$$h(X,z) = E(Y|X,Z=z)$$

This is of course unknown. We model it, and substitute the prediction:

$$\hat{\mu}_{3}(z) = \hat{\mu}_{1}(z) - n^{-1} \sum_{i=1}^{n} \left[\frac{1(Z_{i} = z) - \hat{\pi}_{z}}{\hat{\pi}_{z}} g^{-1} (\hat{\beta}_{0} + \hat{\beta}_{X}^{T} X_{i} + \hat{\beta}_{Z} z) \right]$$

Variance estimation for $\hat{\mu}_3(z)$

• Variance of $\hat{\mu}_3(z)$ can be estimated by

$$\hat{\pi}_{z}^{-2}n^{-2}\sum_{i=1}^{n}\left[1(Z_{i}=z)\{Y_{i}-\hat{\mu}_{3}(z)\}\right] - \{1(Z_{i}=z)-\hat{\pi}_{z}\}\{h(X_{i},z,\hat{\beta})-\hat{\mu}_{2}(z)\}\right]^{2}$$

Rate estimation

- In some studies we plan to follow patients for a time τ, and Y counts the number of events of a certain type occur for the patient
- A common target of inference is then the rate $E(Y^z)/ au$
- $\hat{\mu_1}(z)$, $\hat{\mu_2}(z)$ and $\hat{\mu_3}(z)$ readily extend to this setting see paper

Outline

Motivation

Baseline adjusted mean estimation

Simulations

Conclusions

・ロ ・ ・ 一部 ・ ・ 注 ト ・ 注 ・ う Q (* 20 / 25

Simulation setup

- Simulated trials with n = 400 patients, two treatments, randomised 1:1
- Single binary baseline covariate X_i
- Follow-up time $T_i = 1$, but for random 25% of patients, $T_i \sim U(0, 1)$
- Event count *Y_i* then simulated using Poisson under four scenarios:

	True rate	Random effect dist.	Outcome model
1	$\gamma_i \exp(3X_i + Z_i)$ $\gamma_i \exp(3X_i + Z_i)$	$\gamma_i \sim Ga(2, 0.5)$ $\log(\gamma_i) \sim N(-0.20, 0.41)$	Neg. bin. Neg. bin
3	$\gamma_i \exp(3X_i + Z_i) - 1.5X_iZ_i)$	$\gamma_i \sim Ga(2, 0.5)$	Neg. bin.
4	$\gamma_i \exp(3X_i + Z_i - 1.5X_iZ_i)$	$\gamma_i \sim \textit{Ga}(2,0.5)$	Poisson

Outcome model always included X_i and Z_i as covariates (but no interaction)

Simulation results

	Scenario 1	Scenario 2	Scenario 3	Scenario 4
$\hat{\mu}_1(z=1)$				
Mean	3.88	3.88	2.80	2.81
95% CI Cov.	94.53	94.28	94.69	94.61
$\hat{\mu}_2(z=1)$				
Bias	0.00	0.00	0.18	0.00
Rel. eff.	1.28	1.28	1.14	1.22
Fixed X CI Cov.	89.61	89.20	81.96	91.15
Random X CI Cov.	94.41	94.20	88.87	95.08
$\hat{\mu}_3(z=1)$				
Bias	0.00	0.00	0.00	0.00
Rel. eff.	1.26	1.25	1.21	1.22
95% CI Cov.	94.47	94.30	94.67	94.56

Outline

Motivation

Baseline adjusted mean estimation

Simulations

Conclusions

・ロト (部)、(言)、(言)、(言)、(言)、(3)(2) 23/25

Conclusions

- Baseline adjusted mean estimates adjust crude outcome means for observed imbalance in baseline covariates, and have the potential to give more precise estimates
- For certain outcome model types, covariate adjusted estimates are guaranteed to be consistent
- Variance estimation should account for sampling variability in covariates where appropriate
- Contrasts of adjusted marginal mean estimates are identical to adjusted estimates of marginal treatment effects
- See paper for:
 - details for rate estimation
 - impacts of stratified randomisation and missing outcomes
 - illustrative example

More information

- Qu Y, Luo J. Estimation of group means when adjusting for covariates in generalized linear models. Pharmaceutical Statistics, 14(1):56–62, 2015
- Bartlett JW. Covariate adjustment and estimation of mean response in randomised trials. Pharmaceutical Statistics. 2018;1-19. https://doi.org/10.1002/pst.1880

25 / 25

- These slides at www.thestatsgeek.com
- Simulation code at www.github.com/jwb133/CovAdjMarginalMean