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Motivation

• Consider a randomised trial which samples n patients from a
population and randomises patients to control Z = 0 or active
treatment Z = 1

• We measure an outcome Y on each patient, and typically also
some baseline covariates X

• Often the primary analysis adjusts for X in the analysis of
outcome Y

• This is typically performed by fitting a regression model for Y ,
with X and Z as covariates

• By using X , we can adjust our treatment effect estimate for
chance imbalances in the X distribution between randomised
groups, thereby improving statistical power
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Motivation

• As well as the estimated treatment effect, the crude mean
outcome in each treatment group is also almost always (and
should be) reported. For treatment group Z = z , this is:

µ̂1(z) =

∑n
i=1 1(Zi = z)Yi∑n
i=1 1(Zi = z)

• Because of randomisation, µ̂1(z) unbiasedly estimates

E (Y |Z = z) = E (Y z) := µ(z)

where Y z is a patient’s potential outcome were they to
receive treatment z

• µ(z) is the average outcome were the population all to be
assigned to receive treatment z
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Questions

• Can we use our covariate adjusted model to estimate µ(z)?

• If so, how, and what would be the benefit of doing so?
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Outcome regression model

• Assume an outcome model is defined, part of which specifies
that (for example)

g(E (Y |X ,Z )) = β0 + βTX X + βZZ

for some link function g(.)

• We fit the model to the trial data, and obtain estimates β̂0,
β̂X , β̂Z
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Mean outcome at the mean covariate values

• An approach sometimes used to obtain X adjusted estimates
of mean outcome under treatment z is to calculate

g−1(β̂0 + β̂TX µ̂X + β̂Z z),

setting X equal to its sample mean µ̂X

• Assuming the outcome model is correctly specified, this is a
consistent estimator of E (Y |X = µX ,Z = z)

• But in general, even though X and Z are independent in a
randomised trial,
µ(z) = E (Y z) = E (Y |Z = z) 6= E (Y |X = µX ,Z = z)

• The quantity being targeted arguably makes little sense for
non-linear models when some covariates are categorical
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Baseline adjusted estimates of µ(z)

• To estimate µ(z) using our model which adjusts for X , we
note that

µ(z) = E (Y z) = E{E (Y z |X )}

• The inner expectation can be estimated using our fitted
regression model by g−1(β̂0 + β̂XX + β̂Z z)

• The outer expectation is then with respect to the distribution
of X

• This motivates the estimator

µ̂2(z) =
1

n

n∑
i=1

g−1(β̂0 + β̂XXi + β̂Z z)
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Qu and Luo 2015

• µ̂2(z) was proposed in the randomised trials context in 2015
by Qu and Luo

• They proposed it as an estimator of the following parameter:

n−1
n∑

i=1

g−1(β0 + βXXi + βZ z)

• This ‘parameter’ is defined in terms of the covariate values of
the particular sample of patients and the population
parameters β0, βX , βZ . Its value thus varies from trial sample
to trial sample, if the Xi are not fixed

• Its values also differs, even if the outcome model is correctly
specified, from n−1

∑n
i=1 Y

z , the mean outcome for the trial
sample were they to be given treatment z

• We will instead focus on estimation of the population
parameter µ(z)...
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Intuition for µ̂2(z)

• µ2(z) uses predictions from all patients to estimate µ(z), and
not only those randomised to Z = z

• We have the potential to gain a more precise estimate of µ(z)
because randomisation implies patients not randomised to z
give us useful information about the (common) distribution of
X

• µ̂2(z) is a standardization / G-computation type estimator
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Consistency of µ̂2(z)

• In general, µ̂2(z) is only consistent for µ(z) if the outcome
model is correctly specified

• Suppose the outcome model is a canonical GLM. Then the
estimation equations are of the form:

0 =
n∑

i=1

{Yi − h(Xi ,Zi , β̂)}
(
1 Xi Zi

)T
• This implies that the sample mean of the predictions in each

treatment group match the sample mean of the outcomes in
that treatment group

• It follows for canonical GLMs that µ̂2(z) is consistent for µ(z)
even if the model is misspecified

• It is also consistent with negative binomial reg., provided the
conditional mean function is correctly specified
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Efficiency of µ̂2(z)

• Using semiparametric theory, one can show that when the
outcome model is correctly specified, µ̂2(z) is the
semi-parametric efficient estimator

• Thus in particular in this case it is more efficient than µ̂1(z)

• This accords with intuition of using additional information
about the common X distribution across all treatment groups
due to randomisation
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Variance estimation for µ̂2(z)

• Qu and Luo described a delta method variance estimator
V̂ar(µ̂2(z)|X) for µ̂2(z) where the target of inference is their
previously described alternative parameter

• In most trial settings, the covariates would not be fixed in
repeated sampling/trials

• To obtain a variance estimator for µ2(z) as an estimator of
µ(z) we can use:

V̂ar(µ̂2(z)|X) + n−2
n∑

i=1

{g−1(β̂0 + β̂TX Xi + β̂Z z)− µ̂2(z)}2
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A third estimator

• Existing semiparametric theory for robust covariate adjusted
estimation in trials can be used to construct a third estimator:

µ̂3(z) = µ̂1(z)− n−1
n∑

i=1

[
1(Zi = z)− π̂z

π̂z
h(Xi , z)

]
for some function h(X , z)

• µ̂3(z) is consistent irrespective of choice of h(X , z)

• This is because E (1(Z = z)|X ) = πz , so the added term is
always mean zero
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Efficiency of µ̂3(z)

• Efficiency of µ̂3(z) is optimised by choosing

h(X , z) = E (Y |X ,Z = z)

• This is of course unknown. We model it, and substitute the
prediction:

µ̂3(z) = µ̂1(z)−n−1
n∑

i=1

[
1(Zi = z)− π̂z

π̂z
g−1(β̂0 + β̂TX Xi + β̂Z z)

]

17 / 25



Variance estimation for µ̂3(z)

• Variance of µ̂3(z) can be estimated by

π̂−2
z n−2

n∑
i=1

[
1(Zi = z){Yi − µ̂3(z)}

− {1(Zi = z)− π̂z}{h(Xi , z , β̂)− µ̂2(z)}
]2
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Rate estimation

• In some studies we plan to follow patients for a time τ , and Y
counts the number of events of a certain type occur for the
patient

• A common target of inference is then the rate E (Y z)/τ

• µ̂1(z), µ̂2(z) and µ̂3(z) readily extend to this setting - see
paper
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Simulation setup

• Simulated trials with n = 400 patients, two treatments,
randomised 1:1

• Single binary baseline covariate Xi

• Follow-up time Ti = 1, but for random 25% of patients,
Ti ∼ U(0, 1)

• Event count Yi then simulated using Poisson under four
scenarios:

True rate Random effect dist. Outcome model

1 γi exp(3Xi + Zi ) γi ∼ Ga(2, 0.5) Neg. bin.
2 γi exp(3Xi + Zi ) log(γi ) ∼ N(−0.20, 0.41) Neg. bin.
3 γi exp(3Xi + Zi − 1.5XiZi ) γi ∼ Ga(2, 0.5) Neg. bin.
4 γi exp(3Xi + Zi − 1.5XiZi ) γi ∼ Ga(2, 0.5) Poisson

Outcome model always included Xi and Zi as covariates (but no
interaction)
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Simulation results

Scenario 1 Scenario 2 Scenario 3 Scenario 4
µ̂1(z = 1)
Mean 3.88 3.88 2.80 2.81
95% CI Cov. 94.53 94.28 94.69 94.61
µ̂2(z = 1)
Bias 0.00 0.00 0.18 0.00
Rel. eff. 1.28 1.28 1.14 1.22
Fixed X CI Cov. 89.61 89.20 81.96 91.15
Random X CI Cov. 94.41 94.20 88.87 95.08
µ̂3(z = 1)
Bias 0.00 0.00 0.00 0.00
Rel. eff. 1.26 1.25 1.21 1.22
95% CI Cov. 94.47 94.30 94.67 94.56
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Conclusions

• Baseline adjusted mean estimates adjust crude outcome
means for observed imbalance in baseline covariates, and have
the potential to give more precise estimates

• For certain outcome model types, covariate adjusted estimates
are guaranteed to be consistent

• Variance estimation should account for sampling variability in
covariates where appropriate

• Contrasts of adjusted marginal mean estimates are identical to
adjusted estimates of marginal treatment effects

• See paper for:
• details for rate estimation
• impacts of stratified randomisation and missing outcomes
• illustrative example
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More information

• Qu Y, Luo J. Estimation of group means when adjusting for
covariates in generalized linear models. Pharmaceutical
Statistics, 14(1):56–62, 2015

• Bartlett JW. Covariate adjustment and estimation of mean
response in randomised trials. Pharmaceutical Statistics.
2018;1-19. https://doi.org/10.1002/pst.1880

• These slides at www.thestatsgeek.com

• Simulation code at
www.github.com/jwb133/CovAdjMarginalMean
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