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Motivation

e Consider a randomised trial which samples n patients from a
population and randomises patients to control Z = 0 or active
treatment Z =1

e We measure an outcome Y on each patient, and typically also
some baseline covariates X

e Often the primary analysis adjusts for X in the analysis of
outcome Y

e This is typically performed by fitting a regression model for Y/,
with X and Z as covariates

e By using X, we can adjust our treatment effect estimate for
chance imbalances in the X distribution between randomised
groups, thereby improving statistical power
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Motivation

e As well as the estimated treatment effect, the crude mean
outcome in each treatment group is also almost always (and
should be) reported. For treatment group Z = z, this is:

i (2) — 27:1 L(Zi = 2)Yi
=S iz =)

e Because of randomisation, [i1(z) unbiasedly estimates
E(Y|Z = 2) = E(Y?) = u(z)

where Y?Z is a patient’s potential outcome were they to
receive treatment z

e 1(z) is the average outcome were the population all to be
assigned to receive treatment z
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Questions

e Can we use our covariate adjusted model to estimate y(z)?

e If so, how, and what would be the benefit of doing so?
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Outline

Baseline adjusted mean estimation
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Outcome regression model

e Assume an outcome model is defined, part of which specifies
that (for example)

g(E(Y|X,2)) = Po+ BxX + BzZ

for some link function g(.)
e We fit the model to the trial data, and obtain estimates BAO,

Bx, Bz
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Mean

outcome at the mean covariate values

An approach sometimes used to obtain X adjusted estimates
of mean outcome under treatment z is to calculate

g ' (Bo + Bxiix + Bzz),
setting X equal to its sample mean [ix

Assuming the outcome model is correctly specified, this is a
consistent estimator of E(Y|X = ux,Z = z)

But in general, even though X and Z are independent in a

randomised trial,

w(z) = E(Y*) = E(Y|Z =z2) # E(Y|X = px, Z = 2)

The quantity being targeted arguably makes little sense for
non-linear models when some covariates are categorical
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Baseline adjusted estimates of ;(z)

To estimate u(z) using our model which adjusts for X, we
note that

p(z) = E(Y?) = E{E(Y*|X)}

The inner expectation can be estimated using our fitted
regression model by g~ 1(5o + BxX + Bzz)

The outer expectation is then with respect to the distribution
of X

This motivates the estimator

1 — A oA 5
fa(z) = = > & (Bo + BxXi + fz2)
i=1
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Qu and Luo 2015

fi2(z) was proposed in the randomised trials context in 2015
by Qu and Luo

They proposed it as an estimator of the following parameter:
n
Y g (Bo+ Bx X + Bzz)
i=1

This ‘parameter’ is defined in terms of the covariate values of
the particular sample of patients and the population
parameters 5g, Bx,Bz. Its value thus varies from trial sample
to trial sample, if the X; are not fixed

Its values also differs, even if the outcome model is correctly
specified, from n=1>"" | YZ, the mean outcome for the trial
sample were they to be given treatment z

We will instead focus on estimation of the population
parameter y(z)...
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Intuition for [iy(z)

e 112(z) uses predictions from all patients to estimate p(z), and
not only those randomised to Z = z

e We have the potential to gain a more precise estimate of 1(z)
because randomisation implies patients not randomised to z
give us useful information about the (common) distribution of
X

e [i»(z) is a standardization / G-computation type estimator

12/25



Consistency of [i,(z)

e In general, [i2(z) is only consistent for 1(z) if the outcome
model is correctly specified

e Suppose the outcome model is a canonical GLM. Then the
estimation equations are of the form:

0= (Y- hX, Z AV (1 X Z)T
i=1

e This implies that the sample mean of the predictions in each
treatment group match the sample mean of the outcomes in
that treatment group

e It follows for canonical GLMs that [i>(z) is consistent for ju(z)
even if the model is misspecified

e |t is also consistent with negative binomial reg., provided the
conditional mean function is correctly specified
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Efficiency of [i»(z)

e Using semiparametric theory, one can show that when the
outcome model is correctly specified, fi2(z) is the
semi-parametric efficient estimator

e Thus in particular in this case it is more efficient than fi;(z)

e This accords with intuition of using additional information
about the common X distribution across all treatment groups
due to randomisation
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Variance estimation for [iy(z)

* Qu and Luo described a delta method variance estimator
Var(fi2(z)|X) for fio(z) where the target of inference is their
previously described alternative parameter

e In most trial settings, the covariates would not be fixed in
repeated sampling/trials

e To obtain a variance estimator for p»(z) as an estimator of
u(z) we can use:

Var(fia(2)|X) + 2Z{g (Bo + By Xi + Bzz) — pa(2)}?
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A third estimator

e Existing semiparametric theory for robust covariate adjusted
estimation in trials can be used to construct a third estimator:

A

) = (@) - Y [T, 2

for some function h(X, z)
e [i13(z) is consistent irrespective of choice of h(X, z)

e This is because E(1(Z = z)|X) = 7., so the added term is
always mean zero
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Efficiency of [i3(z)

e Efficiency of fi3(z) is optimised by choosing
h(X,z) = E(Y|X,Z = 2)

e This is of course unknown. We model it, and substitute the
prediction:

fi3(z) = ‘12 [” g (Bo + BLXi + Bz2)
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Variance estimation for [i3(z)

e Variance of fi3(z) can be estimated by

A7? -22 ){Yi - pa(2)}
—{UZ = 2) — " H{h(Xi,2, ) — Pa(2)}]°
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Rate estimation

e In some studies we plan to follow patients for a time 7, and Y
counts the number of events of a certain type occur for the
patient

e A common target of inference is then the rate E(Y?)/7

e i1(2), tia(z) and f3(z) readily extend to this setting - see
paper
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Simulation setup

e Simulated trials with n = 400 patients, two treatments,
randomised 1:1

e Single binary baseline covariate X;

e Follow-up time T; = 1, but for random 25% of patients,

Ti ~ U(0,1)
e Event count Y; then simulated using Poisson under four

scenarios:
True rate Random effect dist. Outcome model

1 viexp(3Xi + Z) ~i ~ Ga(2,0.5) Neg. bin.

2 ~iexp(3Xi + Zj) log(vi) ~ N(—0.20,0.41) Neg. bin.

3 Yi exp(3X,- +Zi — 1.5X,‘Z,') i~ Ga(2, 0.5) Neg. bin.

4  ~iexp(3Xi+ Z —1.5XZ)) i~ Ga(2,0.5) Poisson

Outcome model always included X; and Z; as covariates (but no
interaction)
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Simulation results

Scenario 1 Scenario 2 Scenario 3  Scenario 4

fir(z =1)

Mean 3.88 3.88 2.80 2.81
95% Cl Cov. 94.53 94.28 94.69 94.61
fiz(z = 1)

Bias 0.00 0.00 0.18 0.00
Rel. eff. 1.28 1.28 1.14 1.22
Fixed X CI Cov. 89.61 89.20 81.96 91.15
Random X CI Cov. 94 .41 94.20 88.87 95.08
fis(z =1)

Bias 0.00 0.00 0.00 0.00
Rel. eff. 1.26 1.25 1.21 1.22

95% Cl Cov. 94.47 94.30 94.67 94.56
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Conclusions

e Baseline adjusted mean estimates adjust crude outcome
means for observed imbalance in baseline covariates, and have
the potential to give more precise estimates

e For certain outcome model types, covariate adjusted estimates
are guaranteed to be consistent

e Variance estimation should account for sampling variability in
covariates where appropriate

e Contrasts of adjusted marginal mean estimates are identical to
adjusted estimates of marginal treatment effects

e See paper for:

o details for rate estimation

e impacts of stratified randomisation and missing outcomes
e illustrative example
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More information

e QuY, Luo J. Estimation of group means when adjusting for
covariates in generalized linear models. Pharmaceutical
Statistics, 14(1):56-62, 2015

e Bartlett JW. Covariate adjustment and estimation of mean
response in randomised trials. Pharmaceutical Statistics.
2018;1-19. https://doi.org/10.1002/pst.1880

e These slides at www.thestatsgeek.com

e Simulation code at
www.github.com/jwb133/CovAdjMarginalMean
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