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Motivation

• MI is very popular, for many reasons, part of which are the
simplicity of Rubin’s rules.

• If imputations are ‘proper’ and imputation and analysis
models are ‘congenial’:

• Rubin’s variance estimator is asymptotically unbiased
• Confidence intervals attain nominal coverage

• Under uncongeniality, Rubin’s variance estimator can be
biased upwards or downwards, depending on setting - Meng
1994 [2], Wang and Robins 1998 [6].

4 / 28



Motivation

• When the imputer and analyst are the same, but we do not
have congeniality, in some settings we may want to obtain the
sharpest (valid) inference possible.

• e.g. using control based MI for missing data in confirmatory
phase 3 randomised clinical trials.

• Here Rubin’s rule variance estimator is biased upwards.

• For particular settings, we may be able to derive valid
analytical variance estimators.

• For continuous endpoints analysed using mixed models, Tang
2017 [4] derived the following delta method variance
estimator...
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Tang 2017 [4]
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Bootstrap alternatives

• Deriving and implementing such variance estimators is hard,
and model specific.

• What other options do we have?

• Recently Schomaker and Heumann 2018 [3] investigated four
combinations of bootstrap with MI.

• von Hippel 2018 [5] has also proposed a bootstrap MI
combination approach.

• We investigate which are valid under uncongeniality, and of
these, which are computationally efficient.

• We will assume sample size is sufficiently large such that the
MI estimator is normally distributed.
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Rubin’s rules MI

• Parameter of interest θ.

• Impute M times, and estimate θ, yielding θ̂m, m = 1, ..,M.

• θ̂M = M−1
∑M

m=1 θ̂m.

• Imputation specific estimates follow

θ̂m = θ̂∞ + am

where θ̂∞ = limM→∞ θ̂M , Var(θ̂∞) = σ2
∞, E (am) = 0,

Var(am) = σ2
btw
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Rubin’s rules MI

• The variance of θ̂M is thus

Var(θ̂M) = σ2
∞ +

σ2
btw

M

• Under congeniality σ2
∞ = σ2

btw + σ2
wtn, which leads to Rubin’s

variance estimator:

(1 + M−1)
1

M − 1

M∑
m=1

(θ̂m − θ̂M)2 + M−1
M∑

m=1

V̂ar(θ̂m)
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MI boot Rubin

1. Impute M times

2. For m = 1, ..,M, generate B nonparametric bootstraps

3. θ̂m,b estimate from imputation m, bootstrap b

4. For imputation m, then estimate σ2
wtn by

V̂arbs(θ̂m) = (B − 1)−1
B∑

b=1

(θ̂m,b − θ̃m)2

where θ̃m = B−1
∑B

b=1 θ̂m,b

5. Rubin’s rules applied to θ̂m and V̂arbs(θ̂m), m = 1, ..,M

Inference is based on Rubin’s rules, so we don’t expect
unbiased variance estimates under uncongeniality
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MI boot pooled

As per MI boot Rubin, except at the final stage, a (1 − 2α)%
percentile confidence interval for θ is formed by taking the α and
1−α empirical percentiles of the pooled MB sample of θ̂m,b values.

Assuming the estimator is unbiased, point estimates follow

θ̂m,b = θ̂∞ + am + bb

where Var(am) = σ2
btw and Var(bb) = σ2

wtn.
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MI boot pooled

For large B the corresponding MI boot pooled variance estimator is
approximately unbiased for

(1 −M−1)σ2
btw + σ2

wtn

Thus for large M and B this will be close to Rubin’s variance
estimator, and hence be unbiased under congeniality.

However, for small M, it is biased downwards and intervals
expected to undercover (under congeniality), as Schomaker and
Heumann found.

Inference is again based (essentially) on Rubin’s rules, so we
don’t expect unbiased variance estimates under
uncongeniality

14 / 28



Outline

Motivation

Rubin’s rules

Impute then bootstrap

Bootstrap then impute

Control based imputation simulation example

Conclusions

15 / 28



Boot MI

1. Bootstrap B times

2. For b = 1, ..,B, impute M times

3. Let θ̂b = M−1
∑

m θ̂b,m

4. Form percentile intervals based on θ̂b, or alternatively a Wald
interval based on

VarBootMI = (B − 1)−1
B∑

b=1

(θ̂b − θ̂BM)2 (1)

where θ̂BM = B−1
∑B

b=1 θ̂b
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Boot MI

The point estimates θ̂bm now follow

θ̂bm = θ̂∞ + cb + am

with Var(cb) = σ2
∞ and Var(am) = σ2

btw

It follows that VarBootMI is unbiased for σ2
∞ +

σ2
btw
M .

We expect unbiased variance estimation under congeniality
or uncongeniality
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Boot MI pooled

The same as Boot MI, but form percentile intervals based on
pooled sample of θ̂b,m.

Schomaker and Heumann found this overcovered in simulations
(under congeniality).

For large B and M, the variance of the pooled sample estimates
σ2
∞ + σ2

btw, and hence is biased upwards, explaining the
overcoverage.

We would not expect nominal coverage, under congeniality
or uncongeniality
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Boot MI for inference under uncongeniality

Boot MI is the only approach we expect to give unbiased variance
estimates under uncongeniality.

We need relatively large B for reliable estimates of variance.

If we choose M small, point estimator is inefficient, and
Monte-Carlo error may be larger than desired.

If we choose M large, BM is large, and computationally costly!
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von Hippel’s boot MI proposal

von Hippel [5] proposed using boot MI, with θ̂BM as the point
estimator

Its variance is

Var(θ̂BM) = (1 + B−1)σ2
∞ + (BM)−1σ2

btw

We can fit a one way random intercepts model to the estimates
θ̂b,m to estimate σ2

∞ and σ2
btw, and insert into the preceding

expression.

Since large B is required for reliable variance estimates, von Hippel
suggested using M = 2.

With M = 2, the approach becomes computationally much less
costly.
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Simulation setup

Sample size n = 500.

Binary ‘treatment’ randomly assigned.

Y1,Y2 (baseline,follow-up) generated from correlated bivariate
normal, with mean of Y2 dependent on ‘treatment’.

50% of Y2 values made missing completely at random.

Analysis model is linear regression of Y2 on treatment and Y1, and
interest focuses on the treatment coefficient.

10,000 simulations
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Imputation methods

Each of the previously described combinations was used with
M = 10 and B = 200

Except, Boot MI von Hippel, which used B = 200 and M = 2

First we imputed Y2 using normal linear regression under MAR.

Next we impute Y2 using the jump to reference MNAR approach,
proposed by Carpenter et al [1]. This imputation model is
uncongenial with the analysis model.
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Results under congeniality (MAR imputation)

Emp. SD Est. SD Med. CI width CI coverage
MI Rubin 0.082 0.082 0.327 95.2

MI boot Rubin 0.082 0.082 0.327 95.1
MI boot pooled 0.082 0.078 0.301 93.4

Boot MI 0.082 0.082 0.321 95.1
Boot MI pooled 0.082 0.098 0.383 98.0

Boot MI von Hippel 0.080 0.080 0.315 95.1

MI boot pooled downward biased slightly, as expected.

Boot MI pooled biased upwards, as expected.
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Results under uncongeniality (J2R imputation)

Emp. SD Est. SD Med. CI width CI coverage
MI Rubin 0.045 0.051 0.200 97.5

MI boot Rubin 0.045 0.051 0.200 97.5
MI boot pooled 0.045 0.050 0.197 97.3

Boot MI 0.045 0.044 0.175 94.8
Boot MI pooled 0.045 0.047 0.185 96.1

Boot MI von Hippel 0.044 0.044 0.174 94.9

Only Boot MI and Boot MI von Hippel are unbiased for the true
repeated sampling variance.

All the others overestimate the variance, and hence CIs overcover.
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Conclusions

• Under uncongeniality, bootstrap followed by MI can provide
unbiased variance estimation and intervals which attain
nominal coverage.

• von Hippel’s version of this is attractive on computational
efficiency grounds.

• Importantly, its application requires no customisation to the
particular imputation/analysis model, unlike analytic
alternatives.

• We have assumed:
• the estimator is normally distributed
• data are i.i.d. (c.f. stratified randomization)

• These slides at www.thestatsgeek.com
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