
Missing covariates in competing risks analysis

Jonathan Bartlett

London School of Hygiene and Tropical Medicine
www.missingdata.org.uk
www.thestatsgeek.com

Centre for Biostatistics
University of Manchester

7th October 2015

1 / 50



Acknowledgements

I am grateful for support from the UK Medical Research Council
(MR/K02180X/1).

This is joint work with Jeremy Taylor, University of Michigan.

2 / 50



Outline

Missing covariates in competing risks analysis

Validity of complete case analysis

Multiple imputation

Simulations

NHANES III analysis

Conclusions

3 / 50



Outline

Missing covariates in competing risks analysis

Validity of complete case analysis

Multiple imputation

Simulations

NHANES III analysis

Conclusions

4 / 50



Competing risks analysis

◮ A set of independent individuals is followed up over time.

◮ For each, we follow them until the first of a set of events
occurs.

◮ Examples include time to death, with cause of death defining
the type of failure, or time to cancer recurrence, with death as
a competing risk.

◮ We record the time of first event Y and the type of event
D ∈ {0, 1, ..,K}, where D = 0 corresponds to censoring.
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Modelling cause specific hazards

◮ Typically we have baseline covariates, and want to model how
the hazards for the competing risks depend on these
covariates.

◮ Model each competing hazard, treating failures from other
failure types as censoring events.

◮ A popular approach is to fit a Cox proportional hazard model
for each cause specific hazard function. i.e. for cause k

hk(t|X ,Z ) = h0k(t) exp(gk(X ,Z , βk))

where gk(X ,Z , βk) gives the linear predictor and h0k(t) is an
arbitrary baseline hazard function.

◮ The parameters βk are log hazard ratios of interest.
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Ignoring competing risks

◮ When covariates are fully observed, to fit the model for cause
1 (say), we can fit a Cox model where we treat failures from
other causes as censorings.

◮ This means that if we are only interested in modelling failure
from one cause, there is no need to model the hazards for the
other causes.
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Illustrative example

◮ The third National Health and Nutrition Examination Survey
(NHANES III) was conducted in the US between 1988 and
1994.

◮ Survey of health and nutrition status of adults and children,
obtained from physical exam and interview.

◮ The overall study involved around 40,000 individuals.

◮ Mortality at end of 2011 has been ascertained by linkage to
the US National Death Index.
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Illustrative example

◮ Here I focus on a subset of individuals aged between 60 and
70 at the time of the original survey.

◮ I ignore the complex survey design here - all results are
intended to be purely illustrative.

◮ Data are available on 2,583 individuals.

◮ I have categorised death into cardiovascular disease (CVD),
cancer, and other causes:

Cause of death Number (%)

CVD 358 (13.9%)
Cancer 379 (14.7%)
Other 755 (29.2%)
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Missingness in covariates

◮ Aim: model hazard for death due to CVD, with baseline risk
factors.

◮ Inevitably, for a variety of reasons, there is non-trivial
missingness in many:

Variable Mean (SD) / no. (%) No. missing (%)

Sex, female 1,302 (50.4) 0
Age (years) 64.4 (2.9) 0
Current smoker 597 (38.9) 1,048 (40.6)
Diabetes 427 (16.6) 3 (0.1)
Alcohol consumer 992 (55.0) 778 (30.1)
SBP (mm Hg) 137.8 (19.4) 297 (11.5)
Total chol. (mg/dl) 225.6 (45.2) 355 (13.7)
CRP > 0.21 mg/dl 946 (42.7) 368 (14.2)
Fibrinogen (mg/dl) 330.8 (96.0) 387 (15.0)
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Missingness in covariates

◮ We can perform complete case analysis, dropping those with
missing covariate values.

◮ Here a complete case analysis uses data from only 1,106
individuals, 42.8% of the total sample.

◮ It is clearly inefficient.

◮ It could be biased too, if data are not missing completely at
random.

◮ An alternative we will consider later is to use multiple
imputation.

11 / 50



Outline

Missing covariates in competing risks analysis

Validity of complete case analysis

Multiple imputation

Simulations

NHANES III analysis

Conclusions

12 / 50



Setup

◮ We assume there exists a failure time T and failure type
indicator D∗ ∈ {1, ..,K}.

◮ Typically some individuals are censored.

◮ We let C denote the potential censoring time for each
individual.

◮ We then observe Y = min(T ,C ) and D = 1(T < C )× D∗,
i.e. we only observe time to first of censoring or failure.

◮ So D ∈ {0, 1, ..,K}, with D = 0 indicating censoring.
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Validity of complete case analysis

◮ We assume there are some covariates X which are partially
observed, while the covariate(s) Z are fully observed.

◮ Let R = 1 denote that all covariates are observed, R = 0 that
some are missing.

◮ We want to fit a Cox model for hazard of failure due to cause
k , i.e.:

hk(t|X ,Z ) = h0k(t) exp(gk(X ,Z , βk))

◮ If values are missing completely at random (MCAR), i.e.
R⊥⊥(T ,D∗,C ,X ,Z ), then complete case analysis (CCA) is
valid.
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Validity of complete case analysis

◮ CCA is also valid under weaker conditions.

◮ Provided R⊥⊥(T ,D∗)|(C ,X ,Z ), CCA is valid.

◮ This means that missingness in X can depend on time to
censoring C , fully observed covariates Z , and even X itself.

◮ Thus, CCA can be valid even under certain missing not at
random mechanisms [1].
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Plausibility of covariate dependent missingness

◮ An assumption that missingness in baseline covariates is
unrelated to future time of failure T , conditional on covariates
X and Z , may sometimes be plausible.

◮ Indeed, missingness can only be independently associated with
the future time of failure T if there exists other variables V
which affect hazard of failure and also missingness in X .
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Assessing missingness assumptions

◮ Unfortunately the CCA validity assumption
R⊥⊥(T ,D∗)|(C ,X ,Z ) cannot be verified from the observed
data.

◮ We can however check whether the data are consistent with a
stronger assumption, that R⊥⊥(T ,D∗,X )|(C ,Z ) and that
X⊥⊥C |Z .

◮ To check, first fit a Cox model where censoring corresponds to
failure, with X and Z as covariates, in those with R = 1, and
check that X is not an important predictor.

◮ Second, fit a Cox model for failure of any type, with R and Z

as covariates, in all individuals, and check R is not an
important predictor.
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Assessing missingness assumptions - NHANES data

◮ In the NHANES data, we fitted a Cox model for death from
any cause, with R and the fully observed variables sex, age,
diabetes (dropping the three observations with diabetes
missing) as covariates.

◮ Unfortunately this showed that R (i.e. missingness) was an
independent predictor of hazard of death.

◮ The data are thus not consistent with the stronger assumption
that R⊥⊥(T ,D∗,X )|(C ,Z ).

◮ Note however, that this does not necessarily mean the CCA is
invalid.

◮ Our findings may have arisen because, for example,
missingness in some covariates depends on their own values
(i.e. MNAR).
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Imputation of a single covariate

◮ We now consider multiple imputation of missing covariate
values.

◮ We first assume there are missing values in only one covariate
X .

◮ We assume the missing values in X are missing at random.

◮ Here this means R⊥⊥X |(Y ,D,Z ), where R denotes whether
X is recorded (R = 1) or not (R = 0).

◮ We assume we have specified a Cox model for each competing
risk, as described earlier.
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Multiple imputation of X

◮ To impute the missing values in X , we must specify a model
for f (X |Y ,D,Z ).

◮ The question is, how should we specify this model, in light of
how we will be analysing the data?

◮ If X were continuous, we might try a linear regression
imputation model, with Y , D (as a factor variable) and Z as
covariates.

◮ The problem with such a model is that it is incompatible with
our outcome or substantive model for f (Y ,D|X ,Z ) (the Cox
models).
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Compatibility between imputation and substantive models

◮ An imputation model f (X |Y ,D,Z ) is said to be compatible
with the substantive model f (Y ,D|X ,Z ) if (loosely speaking)
there exists a joint model f (Y ,D,X |Z ) which has these
models as its conditionals.

◮ Assuming we believe in our substantive model being (at least
approximately) correctly specified, unless our imputation
model for X , or a model nested within it, is compatible with
the substantive model, our imputation model is misspecified
[2].

◮ Essentially, incompatibility means the two models (imputation
and substantive) conflict – they can’t both be right!

◮ Our previously posited imputation model for X , it turns out, is
not compatible with the Cox models for the competing risks.

◮ Using it would therefore expect to result in biased estimates
and invalid inferences.
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Imputation of covariates in survival analysis

◮ In the simpler survival analysis setting, White and Royston
showed that an approximately compatible imputation model
for X , when the Cox outcome model contains main effects of
X and Z , is one which includes D (the event indicator) and
H0(t) =

∫ t

0 h0(u)du as covariates [3].

◮ Recently, Resche-Rigon et al have extended these results to
the competing risks setting, showing that one should include
D (as a factor variable) and H0k(Y ) (k = 1, ..,K ) as
covariates [4].

◮ The unknown baseline hazard function can be approximated
by the marginal Nelson-Aalen estimates of the cause specific
hazard functions.

◮ A drawback of their results is that they are only approximate,
and do not obviously generalize when the Cox models contain
interactions or non-linear covariate effects.
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Imputing compatibly

◮ To derive an imputation model for X which is compatible with
the outcome model, we can express the conditional
distribution f (X |Y ,D,Z ) as:

f (X |Y ,D,Z ) =
f (X ,Y ,D|Z )

f (Y ,D|Z )

∝ f (Y ,D|X ,Z )f (X |Z )

◮ The first component, f (Y ,D|X ,Z ), is determined by the
assumed models for the cause specific hazard functions.

◮ The imputation distribution specification is thus completed by
specifying a model f (X |Z , φ).

◮ This can be chosen according to the type of variable, e.g.
linear regression for continuous X , logistic regression for
binary X , etc.
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Imputing compatibly with the substantive model

◮ MI is derived from a Bayesian perspective, with draws taken
from the posterior of the missing data given the observed data
and priors for model parameters.

◮ Typically the priors are chosen as ‘standard’ noninformative
ones.

◮ Here we can assume independent standard priors for the
parameters in the Cox models and for parameter φ in the
model f (X |Z , φ).

◮ To sample from the posterior, we use a Gibbs sampling
approach, where we iterate between:

1. imputing X from the previously described distribution,
conditional on current values of model parameters

2. sampling new parameters from their posteriors given priors,
observed data, and current imputed values of X

◮ We run multiple independent chains, taking last set of
imputed values in each to create each imputed dataset.
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Sampling from the imputation distribution

◮ In the case of binary/categorical X , it is easy to work out the
required probabilities P(X = x |Y ,D,Z ).

◮ More generally, the imputation distribution, which is
compatible with the substantive (Cox) models, does not
belong to a standard parametric family.

◮ We use rejection sampling to draw from the distribution, with
f (X |Z , φ) as the proposal distribution (details omitted).
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Advantages of substantive model compatible imputation

◮ Imputing the partially observed covariate compatibly with the
substantive model is desirable since incompatibility implies the
imp. model is misspecified.

◮ If the Cox models include interactions or non-linear effects
involving partially observed covariates, it is very difficult, if not
impossible, to specify direct imputation models f (X |Y ,D,Z )
which are compatible with the substantive Cox models.

◮ Our approach can automatically handle such situations.
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Missingness in multiple covariates

◮ So far we have assumed we have missing values in only one
covariate, X .

◮ Of course in practice often multiple covariates have missing
values, so that X is vector valued.

◮ In principle we could specify a multivariate model f (X |Z , φ),
and extend the Gibbs sampling approach developed earlier.

◮ However, specifying such multivariate models directly
becomes tricky when some components of X are continuous
and some are discrete.
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Chained equations / fully conditional specification MI

◮ More generally, the chained equations / fully conditional
specification approach to MI has become popular for imputing
when there are variables of different types.

◮ This involves specifying a separate conditional imputation
model for each partially observed variable.

◮ i.e. for each partially observed variable Xj , j = 1, .., p, we
specify a model for f (Xj |Y ,D,X−j ,Z ), where
X−j = (X1, ..,Xj−1,Xj+1, ..,Xp).

◮ The problem, as in the case of one missing variable, is how to
ensure each of these models is compatible with the
substantive model.
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Substantive model compatible fully conditional

specification imputation

◮ Recently we proposed a modification of this, called
substantive model compatible fully conditional specification
imputation (SMC-FCS), which combines the flexibility of FCS
MI with the concept of ensuring compatibility between
imputation and substantive models [2].

◮ We specify a separate model f (Xj |X−j ,Z , φ) for j = 1, .., p
where there are p partially observed covariates.

◮ This approach readily incorporates our earlier results for the
case of competing risks outcomes.

◮ There is however a potential concern, since the models
f (Xj |X−j ,Z , φ) may be mutually incompatible. Whether or
not such incompatibility causes a problem in practice requires
further research.
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Substantive model compatible fully conditional

specification imputation

◮ The SMC-FCS approach is implemented in both Stata (from
SSC) [5] and R (from CRAN).

◮ See www.missingdata.org.uk for instructions on installing the
latest development version.

◮ As well as competing risks outcomes, linear regression, logistic
regression, and Cox models for time to event data are
supported.

◮ Covariates can be imputed using normal, logistic, ordinal
logistic, multinomial logistic, Poisson, and negative binomial
models.
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Simulation 1 - setup

◮ Samples of size n = 1000.

◮ X1 ∼ Bernoulli(0.5).

◮ X2|X1 ∼ Bernoulli(0.25 + 0.5X1).

◮ X3|X1,X2 ∼ N(−1 + X1 + X2, 1)

◮ Probability of X3 being missing 0.25 + 0.5X1 (so 50% missing)
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Simulation 1 - setup

◮ Two competing events. First with hazard

h1(t|X1,X2,X3) = 0.002 exp(β11X1 + β12X2 + β13X3)

and second with

h1(t|X1,X2,X3) = 0.002 exp(β21X1 + β22X2 + β23X3)

◮ Random censoring, with hazard 0.002.
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Methods

◮ Full data (results not shown here)

◮ Complete case analysis (results not shown here)

◮ Direct imputation, assuming f (X3|T ,D,X1,X2) is normal,
with covariates X1,X2,D (factor variable) and Nelson-Aalen
estimates of H01(T ) and H02(T ).

◮ Substantive model compatible MI, assuming the Cox models
for cause specific hazards, and that f (X3|X1,X2) is normal
linear regression.

5 imputations for both imputation methods
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Results based on 1,000 simulations

Direct MI SMC MI
Mean SD CI Mean SD CI

β11 = 1 0.92 0.12 0.93 1.04 0.14 0.94
β12 = 1 1.03 0.12 0.96 1.01 0.14 0.95
β13 = 1 0.66 0.06 0.06 0.99 0.09 0.94
β21 = 0.5 0.44 0.21 0.94 0.52 0.21 0.94
β22 = −1 -1.03 0.25 0.95 -1.00 0.25 0.94
β23 = 0.75 0.62 0.11 0.83 0.76 0.13 0.95

36 / 50



Simulation conclusions

◮ The directly specified imputation approach gives slightly
biased estimates for fully observed covariate effects, but badly
biased for effect of partially observed covariate.

◮ The imp. model it uses is only approximately compatible with
the Cox substantive models.

◮ Particularly when covariate effects are large, the
approximation breaks down, leading to bias.

◮ In contrast, the substantive model compatible MI gives
unbiased estimates, and CIs have correct coverage.

37 / 50



Simulation 2 - setup

Same as before, except

◮ binary covariate X2 also made missing (MCAR 25%).

◮ hazard functions include interaction between X2 and X3:

hk(t|X1,X2,X3) = 0.002 exp(βk1X1 + βk2X2 + βk3X3 + βk4X2X3)

for k = 1, 2
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Methods

◮ Chained equations / FCS MI, using logistic imp. model for X2

and normal model for X3, adjusting for event indicator and
Nelson-Aalen cumulative hazards as before.

◮ Substantive model compatible FCS, using logistic imp. model
for X2 and normal model for X3, accounting for interaction in
cause specific hazard functions.
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Results based on 1,000 simulations

FCS MI SMC-FCS MI
Mean SD CI Mean SD CI

β11 = 1 0.94 0.13 0.94 1.03 0.14 0.94
β12 = 1 1.08 0.15 0.93 0.99 0.15 0.96
β13 = 1 0.64 0.10 0.21 1.02 0.14 0.95
β14 = −1 -0.56 0.08 0.08 -1.03 0.17 0.94
β21 = 0.5 0.51 0.18 0.96 0.55 0.20 0.94
β22 = −1 -0.07 0.20 0.05 -0.93 0.31 0.94
β23 = 0.75 0.72 0.10 0.97 0.74 0.13 0.96
β24 = 1 0.14 0.09 0.00 0.96 0.21 0.96
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Simulation conclusions

◮ Standard FCS fails to allow for interactions in the Cox models,
leading to substantial bias for some parameters.

◮ SMC-FCS is essentially unbiased, with confidence interval
coverage attaining nominal 95% level.
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NHANES III - illustrative analysis

◮ Returning to the NHANES III data, we would like to fit a Cox
model for hazard of death due to CVD, with the risk factors
listed earlier as covariates.

◮ We use the study time scale, with adjustment for age at
baseline.

◮ We will analyse using the following approaches:
◮ Complete case analysis (CCA)
◮ Imputing using FCS (chained equations), with failure indicator

and Nelson-Aalen estimates of the three cumulative hazards as
predictors

◮ SMC-FCS

43 / 50



NHANES III - selected results

Estimate (SE) of log hazard ratios

Complete case FCS SMC-FCS

Male 0.51 (0.18) 0.69 (0.12) 0.69 (0.12)
Age 0.086 (0.027) 0.09 (0.019) 0.092 (0.019)

Current smoker 0.59 (0.15) 0.63 (0.13) 0.63 (0.13)
Diabetic 0.26 (0.2) 0.74 (0.13) 0.75 (0.13)

Alcohol consumer 0.38 (0.16) 0.37 (0.14) 0.35 (0.14)
SBP (per 10mmHg) 0.96 (0.38) 1.38 (0.28) 1.36 (0.29)
Cholesterol (mg/ml) 0.34 (0.16) 0.31 (0.12) 0.31 (0.12)
CRP (>0.21mg/dl) 0.45 (0.17) 0.45 (0.12) 0.45 (0.12)
Fibrinogen (mg/dl 0.19 (0.08) 0.13 (0.06) 0.13 (0.06)
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NHANES III - illustrative analysis conclusions

◮ Substantial gains in precision through imputing missing
covariates.

◮ Some material changes between estimates from CCA and MI
approaches.

◮ FCS and SMC-FCS give similar estimates (since no
interactions/non-linear covariate effects).

◮ Unclear which missingness assumption (CCA or MAR) is more
reasonable, but arguably missingness in smoking/alcohol could
be MNAR.

◮ In this case, one might argue that the CCA is more plausibly
valid.
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Conclusions

◮ Missing covariates are a common issue in competing risks
analysis.

◮ Complete case analysis is valid provided missingness does not
depend on time to failure and failure type.

◮ To a certain extent this assumption can be investigated using
the observed data.
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Conclusions

◮ Multiple imputation, under the MAR assumption, provides an
alternative approach.

◮ We gain efficiency by imputing missing values, compared to
CCA.

◮ In certain cases the MAR assumption is arguably more
questionable however.

◮ The SMC-FCS approach ensures missing covariates are
imputed from models which are compatible with the
competing risks models we specify.

◮ Software is available in Stata and R - see
www.missingdata.org.uk
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