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The setting

◮ Suppose we have an outcome of interest Y , partially observed
variables X1,X2, ..,Xp , and fully observed covariates Z .

◮ We specify a substantive model (SM) for
f (Y |X1, ..,Xp ,Z , ψ), with parameters ψ.

◮ e.g. linear regression of Y , with covariate vector some
function of X1, ..,Xp and Z .

◮ e.g. covariates include X1 × X2, or X
2
1 , or X1/X

2
2 ...

◮ We assume throughout that the SM is correctly specified.

◮ The variables X1, ..,Xp have missing values, and we will
assume the missing at random assumption holds.
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Full conditional specification (FCS) multiple imputation

◮ Multiple imputation by full conditional specification (FCS)
(sometimes called chained equations) has become very
popular in recent years.

◮ FCS involves specifying univariate models for each partially
observed variable, conditional on all other variables:
f (Xj |X−j ,Z ,Y , θj), j = 1, .., p.

◮ Missing values are imputed in Xj , conditional on observed
values and most recent imputation of X−j and Z ,Y .

◮ We then cycle through each of the partially observed
variables, imputing from each univariate model, in a Gibbs
sampling approach.

◮ Since each univariate model can be of a different type, FCS is
particularly appealing for datasets with mixtures of continuous
and categorical variables.
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Full conditional specification (FCS) multiple imputation

For imputation m = 1, ..,M:

1. Initially impute missing values in X using some ad-hoc
approach.

2. For iteration t = 1, ..,T :
2.1 Impute from f (X1|X−1,Z ,Y , θ1):

◮ Fit model f (X1|X−1,Z ,Y , θ1) using subjects for whom X1 was
observed.

◮ Draw θ
(t)
1 from posterior for θ1 corresponding to this fit.

◮ Impute missing values in X1 (once) from f (X1|X−1,Z ,Y , θ
(t)
1 ).

2.2 Impute from f (X2|X−2,Z ,Y , θ2)
2.3 ...
2.4 Impute from f (Xp |X−p,Z ,Y , θp)

3. Current imputed values of missing values used to form mth
imputed dataset.
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Existing imputation approaches

◮ If the SM contains non-linear terms, interactions, or is
non-linear (e.g. Cox), using FCS for covariates becomes tricky.

◮ i.e. difficult to directly specify f (Xj |X−j ,Z ,Y , θj) from
standard models families which are compatible with
f (Y |Xj ,X−j ,Z , ψ)

◮ As described in the preceding talk, existing approaches (at
least those which are available to researchers in software) in
general lead to biased estimates and invalid inferences.

8 / 24



Compatibility

◮ Loosely speaking, an imputation model (IM)
f (Xj |X−j ,Z ,Y , ω) is said to be compatible with the SM
f (Y |Xj ,X−j ,Z , ψ) if there exists a joint model

f (Y ,Xj |X−j ,Z , θ)

which has conditionals which match the IM and SM.

◮ e.g. suppose the SM is Y |X ∼ N(ψ0 + ψ1X + ψ2X
2, σ2ψ).

◮ Suppose the IM is X |Y ∼ N(ω0 + ω1Y , σ
2
ω).

◮ Then the SM and IM are incompatible.
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The implications of incompatibility

◮ Unless the IM, or a restricted version of it, is compatible with
the SM, incompatibility implies the IM is mis-specified
(assuming of course the SM is correct).

◮ When the SM contains non-linear terms or interactions,
common choices of IMs for covariates are incompatible, and
are hence mis-specified.

◮ It is therefore desirable to use an IM which is compatible with
the SM.

◮ Note that compatibility is necessary but not sufficient for the
IM to be correctly specified (remembering we are assuming
the SM is always correct).
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Ensuring compatibility

◮ The natural way to ensure the IM is compatible with the SM
is to specify a model f (X1, ..,Xp |Z , φ) and impute from

f (X |Z ,Y , ψ, φ) =
f (Y ,X |Z , ψ, φ)

f (Y |Z , ψ, φ)
∝ f (Y |X ,Z , ψ)f (X |Z , φ)

◮ This depends on specifying a joint model f (X1, ..,Xp |Z , φ).

◮ In practice specifying such joint models is challenging - this is
partly why FCS is so popular.
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Substantive model compatible FCS

◮ We propose a modification of FCS, which ensures each
univariate IM is compatible with the assumed SM.

◮ For each j = 1, .., p, we specify a model for f (Xj |X−j ,Z , φj )
and then impute from the distribution proportional to

f (Y |Xj ,X−j ,Z , ψ)f (Xj |X−j ,Z , φj)

◮ The first density in this product is just the SM f (Y |X ,Z , ψ).
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Drawing imputations

◮ The implied imputation model(s) f (Xj |X−j ,Z ,Y , φj , ψ)
usually do not belong to standard model families.

◮ We appeal to the Monte-Carlo method of rejection sampling
to generate draws.

◮ Rejection sampling involves drawing from an easy-to-sample
(candidate) distribution until a particular criterion/bound is
satisfied.

◮ Deriving this bound is relatively easy if we use our model for
f (Xj |X−j ,Z ) as the candidate distribution.
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The SMC-FCS algorithm

◮ Substantive model compatible FCS (SMC-FCS) approach
modifies standard FCS as follows.

◮ To impute Xj , we (assuming independence of priors for ψ and
φj)

1. Draw ψ(t) from the posterior for ψ conditional on observed
data and current imputations.

2. Draw φ
(t)
j from the posterior for φj conditional on observed

data and current imputations.
3. Impute Xj from density proportional to

f (Y |Xj ,X−j ,Z , ψ
(t))f (Xj |X−j ,Z , φ

(t)
j ), using rejection

sampling.

◮ More details in [1].
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Statistical properties

◮ With only a single covariate partially observed, SMC-FCS is
equivalent to traditional ‘joint model’ MI, and thus inherits
the latter’s statistical properties.

◮ With multiple partially observed covariates, under certain
conditions regarding compatibility between the covariate
models f (Xj |X−j ,Z ) and priors, SMC-FCS is equivalent to
‘joint model MI’.

◮ As with standard FCS MI, it is possible to specify models
f (Xj |X−j ,Z ) that are mutually incompatible [2, 3].
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Simulation study

Data for n = 1, 000 subjects were simulated according to:

Y = β0 + β1X1 + β2X2 + β3X1X2 + ǫ,

with ǫ
iid
∼ N(0, σ2ǫ ) and σ

2
ǫ chosen to give R2 = 0.5.

X1 and X2 were generated as (correlated):

◮ Bivariate normal

◮ X1 Bernoulli, X2|X1 normal with constant variance

Values of X1 and X2 were each made MAR with probability of
observation expit(α0 + α1Y ) where α1 = −1/SD(Y ) and α0 such
that 30% of values were missing.
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Estimation methods

The parameters of the SM were estimated using:

◮ Passive imputation (assuming Xj |Y ,X−j is normal/logistic,
with interaction of Y and X−j)

◮ Just another variable (JAV) (assuming (X1,X2,X1X2,Y ) is
multivariate normal)

◮ SMC-FCS (assuming Xj |X−j normal or logistic)

10 imputations were used for each method.
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Results

Mean (empirical SD) of estimates of β1 = 1 and β3 = 1 based on
1,000 simulations.

X1,X2 distribution Passive JAV SMC-FCS

X1,X2 bivariate β1 = 1 1.63 (0.37) 1.31 (0.60) 1.03 (0.46)
normal β3 = 1 0.64 (0.12) 0.96 (0.30) 0.97 (0.19)

X1 Bernoulli β1 = 1 1.11 (0.21) 1.14 (0.22) 1.00 (0.22)
X2|X1 normal β3 = 1 0.78 (0.15) 0.97 (0.22) 0.98 (0.17)

CI coverage (not shown here) was poor for passive and JAV, but
was close to 95% for SMC-FCS
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Conclusions - 1

◮ We think SMC-FCS is an attractive approach for imputing
covariates, particulary when the SM contains
non-linear/interaction terms.

◮ Analogous to standard FCS MI, one should be wary of the
possibility of incompatibility between the models f (Xj |X−j ,Z ).

◮ To some, the requirement to specify the SM when imputing is
a drawback.

◮ We argue one should always bear in mind the SM when
imputing.

◮ In practice, one could impute assuming a general SM, and
then fit nested SMs to the imputed data.
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Conclusions - 2

◮ SMC-FCS may be useful in allowing for skewed distributions
while retaining desired/assumed dependence between outcome
and covariate.

◮ Also useful in situations when SM depends on a particular
function of variables, e.g.

BMI=weight/height^2

◮ Stata command smcfcs can be downloaded from
www.missingdata.org.uk.

◮ Preprints of methods paper available on arXiv [1] and Stata
journal paper (under review) at www.missingdata.org.uk
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