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Motivation - Aalen et al 2015 [4]
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Aalen et al 2015

“Despite the fact that treatment assignment is
randomized, the hazard ratio is not a quantity which
admits a causal interpretation in the case of unmodelled
heterogeneity.”

“This makes it unclear what the hazard ratio computed
for a randomized survival study really means. Note, that
this has nothing to do with the fit of the Cox model. The
model may fit perfectly in the marginal case with X as
the only covariate, but the present problem remains.”
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Aalen et al ’s critique

They give two perspectives on the problem:

• Randomisation ensures balance (on average) of baseline risk
factors (measured and unmeasured) between treatment
groups.

• But at times after baseline, survivors (risk sets) in the two
treatment groups in general have different distributions of
baseline risk factors.

• Cox’s partial likelihood consists of terms comparing these, and
therefore the treatment contrast (hazard ratio) is not a valid
contrast/effect.
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Aalen et al ’s critique

The second:

• Aalen et al consider individual level hazard function, which
depends on all risk factor effects (frailty) and the effect of
randomised treatment.

• Suppose hazards are proportional conditional on frailty and
treatment. Then the coefficient of treatment in this model is
true biological effect of treatment.

• If you marginalise over frailty, you lose proportional hazards
(in general).

• The Cox model which adjusts only for treatment doesn’t
estimate this ‘true’ effect of treatment.
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Potential outcomes and the randomised trial

Consider a population of patients.

Two binary potential outcomes (POs) Y 0
i and Y 1

i corresponding to
control and active treatment.

We randomly allocate treatment level Zi , Zi = 0 for control,
Zi = 1 for active.

We observe Yi = ZiY
1
i + (1− Zi )Y

0
i .

We can calculate:

• treatment group proportions: Ȳ 0 and Ȳ 1

• risk difference (RD): R̂D = Ȳ 1 − Ȳ 0

• risk ratio (RR): R̂R = Ȳ 1/Ȳ 0

• odds ratio (OR): ÔR = Ȳ 1(1−Ȳ 0)

Ȳ 0(1−Ȳ 1)
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Stochastic vs. deterministic potential outcomes

POs could be deterministic or stochastic [1]

Stochastic POs: Y 0
i ∼ Bernoulli(π0

i ), Y 1
i ∼ Bernoulli(π1

i ).

‘Purely’ stochastic POs: π0
i = π0, π1

i = π1 for all i . This is
implausible due to observed variation in risk between individuals.

‘Partly’ stochastic POs: π0
i = g0(Xi ), π1

i = g1(Xi ) for baseline
(measured and unmeasured) variables Xi .

Deterministic POs: π0
i = h0(Xi ) ∈ {0, 1}, π1

i = h1(Xi ) ∈ {0, 1}.

Quantum physics implies (apparently) POs can’t be truly
deterministic. Causal inference literature tends towards
deterministic, often implicitly.
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Causal effect measures - stochastic POs

Stochastic POs: Y 0
i ∼ Bernoulli(π0), Y 1

i ∼ Bernoulli(π1).

Y 1
i − Y 0

i , is itself stochastic, and can’t be estimated.

Ȳ 0 and Ȳ 1 estimate π0 and π1, and R̂D estimates π1 − π0.

π1 − π0 is the common individual level causal RD.

RR and OR can be interpreted as common individual level causal
effects.

But we have said purely stochastic POs are implausible!
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Causal effect measures - partly stochastic POs

‘Partly’ stochastic POs: π0
i = g0(Xi ), π1

i = g1(Xi ) for baseline
(measured and unmeasured) variables Xi .

Y 1
i − Y 0

i , is again stochastic.

π1
i − π0

i now varies across individuals, in general.

R̂D estimates Ei (π
1
i )− Ei (π

0
i ) = E (π1

i − π0
i ).

This can be interpreted as a population level causal RD.

R̂D can only be interpreted as an individual level RD if π1
i − π0

i did
not vary across i .
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Causal effect measures - partly stochastic POs

R̂R estimates
Ei (π

1
i )

Ei (π
0
i )

.

This is a population level RR.

Again only if π1
i /π

0
i were identical across i could it be interpreted

as an individual level RR.

If individual level RD is common, RR cannot be, and vice-versa.
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Causal effect measures - partly stochastic POs

ÔR estimates population level OR:
Ei (π

1
i )(1−Ei (π

0
i ))

Ei (π
0
i )(1−Ei (π

1
i ))

.

Due to non-collapsibility of the OR, the population level OR does
not equal the individual level OR even when the latter is identical
across individuals.

If the individual level OR were identical across individuals, we need
to condition adjust (correctly) on all prognostic factors to estimate
it.

No reason to think that we will ever have all the prognostic
variables measured, and if we did, that we correctly model their
effects.
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Causal effect measures - deterministic POs

Y 1
i − Y 0

i is 0, 1, or -1, and is now fixed for each individual,
although they are not identifiable.

R̂D estimates population RD Ei (Y
1
i )− Ei (Y

0
i ), and similarly for

R̂R and ÔR.

There is no longer an individual level RD, RR, or OR.

Adjusted/conditional (e.g. logistic regression) estimates
sub-population level OR, assuming this is common across
sub-populations defined by covariates.
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Population vs. individual effects

Some advocate adjusting for covariates and interpreting the
resulting estimate as an individual level effect (e.g. Harrell [3]).

But this relies on assuming:

• the chosen effect measure is common across individuals

• we correctly model covariate effects

Because of these issues, others are more cautious, choosing instead
to target population (marginal) effects (e.g. Steingrimsson et al
[2]).

Of course one could estimate sub-population effects, allowing for
the possibility/fact(!) that these will vary across sub-populations.
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Cox model under purely stochastic POs

• Y 0
i and Y 1

i are now the failure times under control and active
treatments for individual i .

• Under purely stochastic POs, we have common individual
level hazard functions λ0(t) and λ1(t).

• Cox’s model then assumes

λ1(t) = λ0(t) exp(β)

• exp(β) then has an interpretation as the common causal effect
on the individual level hazard.

• This is probably how many people interpret the hazard ratio
(HR) from such a model.

• As in the binary case though, the purely stochastic model is
implausible since there is always variation in risk, so such an
interpretation would not generally be justified.
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Cox model under partly stochastic POs

• Here we have λ0
i (t) = g0(Xi , t) and λ1

i (t) = g1(Xi , t) for
baseline variables Xi .

• This is the view of the world Aalen et al assume to hold.

• As shown by Aalen et al , even if λ1
i (t)/λ0

i (t) = exp(β) for all
i and t, then the Cox model adjusting only for treatment does
not estimate exp(β), due to non-collapsibility.

• So, as per Aalen et al , the estimated HR from a Cox model
with treatment as covariate cannot in general be validly
interpreted as an individual level HR.

• Recall however that the same conclusion applies to ORs for
binary outcomes!
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Cox model under deterministic POs

• Under deterministic POs and assuming proportional hazards
conditional on treatment only, the resulting HR indicates the
ratio of population level hazards.

• This tells you that if you assign treatment 1 to the population,
the population hazard/rate of events at any time is exp(β)
times what it would have been had you assigned treatment 0.

• Under marginal proportional hazards we have

exp(β) =
log{S1(t)}
log{S0(t)}

=
log[Ei{1(Y 1

i > t}]
log[Ei{1(Y 0

i > t}]

• So it also has a (nasty) interpretation in terms of a ratio of
log population survival probabilities.
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Conclusions

• Main analyses of RCTs can’t estimate individual level causal
effects, unless you make the strong assumption that the effect
(on your chosen scale) is identical across individuals.

• For the Cox model, even if this were the case, the Cox model
adjusting only for treatment would not estimate this common
effect, due to non-collapsibility.

• But the same is true for other models which are
non-collapsible, e.g. logistic regression for binary outcomes.

• Assuming proportional hazards holds conditional on
treatment, HRs DO have a valid causal interpretation as
population level HRs.

• These slides, plus comments from Aalen at
www.thestatsgeek.com
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