Improving efficiency in RCTs using propensity scores

Propensity scores have become a popular approach for confounder adjustment in observational studies. The basic idea is to model how the probability of receiving a treatment or exposure depends on the confounders, i.e. the 'propensity' to be treated. To estimate the effect of exposure, outcomes are then compared between exposed and unexposed who share the same value of the propensity score. Alternatively the outcome can be regressed on exposure, weighting the observations using the propensity score. For further reading on using propensity scores in observational studies, see for example this nice paper by Peter Austin.

But the topic of this post is on the use of propensity scores in randomized controlled trials. The post was prompted by an excellent seminar recently given by my colleague Elizabeth Williamson, covering the content of her recent paper 'Variance reduction in randomised trials by inverse probability weighting using the propensity score" (open access paper here).

Read moreImproving efficiency in RCTs using propensity scores