Prediction intervals after random-effects meta-analysis

Christopher Partlett and Richard Riley have just published an interesting paper in Statistics in Medicine (open access here). They examine the performance of 95% confidence intervals for the mean effect and 95% prediction intervals for a new effect in random-effects meta-analysis.

Read morePrediction intervals after random-effects meta-analysis

Why you shouldn't use propensity score matching

I've just watched a highly thought provoking presentation by Gary King of Harvard, available here, on why propensity score matching should not be used to adjust for confounding in observational studies. The presentation makes great use of graphs to explain the concepts and arguments for some of the issues with propensity score matching.

Read moreWhy you shouldn't use propensity score matching

Confidence intervals for the hazard ratio in RCTs which agree with log rank test

The log rank test is often used to test the hypothesis of equality for the survival functions of two treatment groups in a randomised controlled trial. Alongside this, trials often estimate the hazard ratio (HR) comparing the hazards of failure in the two groups. Typically the HR is estimated by fitting Cox's proportional hazards model, and a 95% confidence interval is used to indicate the precision of the estimated HR.

Read moreConfidence intervals for the hazard ratio in RCTs which agree with log rank test

Multiple imputation for informative censoring R package

Yesterday the Advanced Analytics Centre at AstraZeneca publicly released the InformativeCensoring package for R, on GitHub. Standard survival or time to event analysis methods assume that censoring is uninformative - that is that the hazard of failure in those subjects at risk at a given time and who have not yet failed or been censored, is the same as the hazard at that time in those who have been censored (with regression modelling, this assumption is somewhat relaxed).

Read moreMultiple imputation for informative censoring R package

Estimands and assumptions in clinical trials

Today I listened to a great Royal Statistical Society webinar, with Alan Phillips and Peter Diggle (current RSS president) presenting. The topic was a particularly hot one in the clinical trials world right now, namely estimands.

Alan's presentation gave an excellent overview of the work of a PSI/EFSPI special interest group on estimands. Topics discussed included defining exactly what is meant by an estimand, whether there should be a standardised set of estimands which could be used across trials conducted in different disciplines, and what the estimand discussion means in terms of implementation and statistical analysis.

Read moreEstimands and assumptions in clinical trials

Estimating effects when outcomes are truncated by death

A common situation arises when one wants to estimate the effect of a treatment or exposure at some time point t in an observational cohort or randomised trial. For example, what is the mean difference in some outcome Y at time t between the two groups of interest. To make things a bit simpler, let's suppose that subjects were allocated to the two groups (e.g. two treatments A and B) randomly, as in a randomised trial. Now suppose that some of the subjects die before time t, such that their outcome Y is not observed. Then we can no longer compare Y between the two groups in all subjects, because some values of Y are missing, or truncated by death.

Read moreEstimating effects when outcomes are truncated by death