Handling competing risks in randomized trials

Peter Austin and Jason Fine (of Fine & Gray fame) have just published a nice review article in Statistics in Medicine on handling competing risks in randomized trials. They reviewed RCTs published in four top medical journals in the last three months of 2015. Of the 40 trials found with time to event outcomes, Austin & Gray determined that 31 were potentially susceptible to competing risks.

Read more

Frequentists should more often consider using Bayesian methods

Recently my colleague Ruth Keogh and I had a paper published: 'Bayesian correction for covariate measurement error: a frequentist evaluation and comparison with regression calibration' (open access here). The paper compares the popular regression calibration approach for handling covariate measurement error in regression models with a Bayesian approach. The two methods are compared from the frequentist perspective, and one of the arguments we make is that frequentists should more often consider using Bayesian methods.

Read more

Why you shouldn't use propensity score matching

I've just watched a highly thought provoking presentation by Gary King of Harvard, available here https://youtu.be/rBv39pK1iEs, on why propensity score matching should not be used to adjust for confounding in observational studies. The presentation makes great use of graphs to explain the concepts and arguments for some of the issues with propensity score matching.

Read more

Confidence intervals for the hazard ratio in RCTs which agree with log rank test

The log rank test is often used to test the hypothesis of equality for the survival functions of two treatment groups in a randomised controlled trial. Alongside this, trials often estimate the hazard ratio (HR) comparing the hazards of failure in the two groups. Typically the HR is estimated by fitting Cox's proportional hazards model, and a 95% confidence interval is used to indicate the precision of the estimated HR.

Read more