Weighting after multiple imputation for MNAR sensitivity analysis not recommended

A concern when analysing data with missing values is that the missing at random (MAR) assumption, upon which a number of methods rely, does not hold. When the missing at random assumption is in doubt, ideally we should perform sensitivity analyses, whereby we assess how sensitive our conclusions are to plausible deviations from MAR. One route to performing such a sensitivity analysis, which is convenient if one has already performed multiple imputation (assuming MAR), is the weighting method proposed by Carpenter et al in 2007. This involves applying a weighted version of Rubin's rules to the parameter estimates obtained from the MAR imputations, with the weight given to a particular imputation estimate depending on how plausible the imputations in that dataset are with an assumed missing not at random (MNAR) mechanism. The method is appealing because, computationally, it requires relatively little additional effort once MAR imputations have been generated.

In an important paper just published by Rezvan et al in BMC Medical Research Methodology, the performance of this weighting method has been explored through a series of simulation studies. In summary, they find that the method does not recover unbiased estimates, even when the number impuations used is large, when the correct (true) value of the MNAR sensitivity parameter is used. The paper explains in detail possible reasons for the failure of the method, but the summary conclusion is that the weighting method ought not to be used for performing MNAR sensitivity analyses after MAR multiple imputation.

What might one do as an alternative? One is to perform the selection modelling MNAR sensitivity analysis using software such as WinBUGS or JAGS, in which the substantive model and selection (missingness) model are jointly fitted, and one uses an informative prior for the sensitivity parameter. A further alternative, which like the weighting approach can (in certain situations) exploit multiple imputations generated assuming MAR, is the pattern mixture approach, whereby the MAR imputations are modified to reflect an assumed MNAR mechanism. The modified imputations can then be analysed and results combined using Rubin's rules in the usual way.

Leave a Reply